Answer:
x = 40
Step-by-step explanation:
Step 1: Write out an equation
4/5(x) = 32
Step 2: Solve by dividing both sides by 4/5
x = 32/(4/5)
<em>Use KCF (Keep Change Flip) if you do not have a calc.</em>
x = 40
Answer:
No , because there are different formulas for each prism.
Step-by-step explanation:
Answer : <em>Equation of line is</em> y=Equation of line is y=
x+
Step-by-step explanation:
Theory :
Equation of line is given as y = mx + c.
Where, m is slope and c is y intercepted.
Slope of given line : y =
x+1 is m= 
We know that line : y =
x+1 is parallel to equation of target line.
therefore, slope of target line will be
.
we write equation of target line as y=
x+c
Now, It is given that target line passes through point ( -5,-2)
hence, point ( -5,-2) satisfy the target line's equation.
we get,
y=
x+c
-2=
-5+ c
-5=
+c
c= 
thus, Equation of line is y=Equation of line is y=
x+
see the attached figure with the letters
1) find m(x) in the interval A,BA (0,100) B(50,40) -------------- > p=(y2-y1(/(x2-x1)=(40-100)/(50-0)=-6/5
m=px+b---------- > 100=(-6/5)*0 +b------------- > b=100
mAB=(-6/5)x+100
2) find m(x) in the interval B,CB(50,40) C(100,100) -------------- > p=(y2-y1(/(x2-x1)=(100-40)/(100-50)=6/5
m=px+b---------- > 40=(6/5)*50 +b------------- > b=-20
mBC=(6/5)x-20
3)
find n(x) in the interval A,BA (0,0) B(50,60) -------------- > p=(y2-y1(/(x2-x1)=(60)/(50)=6/5
n=px+b---------- > 0=(6/5)*0 +b------------- > b=0
nAB=(6/5)x
4) find n(x) in the interval B,CB(50,60) C(100,90) -------------- > p=(y2-y1(/(x2-x1)=(90-60)/(100-50)=3/5
n=px+b---------- > 60=(3/5)*50 +b------------- > b=30
nBC=(3/5)x+30
5) find h(x) = n(m(x)) in the interval A,B
mAB=(-6/5)x+100
nAB=(6/5)x
then
n(m(x))=(6/5)*[(-6/5)x+100]=(-36/25)x+120
h(x)=(-36/25)x+120
find <span>h'(x)
</span>h'(x)=-36/25=-1.44
6) find h(x) = n(m(x)) in the interval B,C
mBC=(6/5)x-20
nBC=(3/5)x+30
then
n(m(x))=(3/5)*[(6/5)x-20]+30 =(18/25)x-12+30=(18/25)x+18
h(x)=(18/25)x+18
find h'(x)
h'(x)=18/25=0.72
for the interval (A,B) h'(x)=-1.44
for the interval (B,C) h'(x)= 0.72
<span> h'(x) = 1.44 ------------ > not exist</span>
Cant answer this without giving an equation