<span>a and c could be true
Animals don't have peace treaties with each other and the other two options would both allow a population to increase in size.</span>
Answer:
Some types of bacteria can cause diseases in humans, such as cholera, diptheria, dysentery, bubonic plague, pneumonia, tuberculosis (TB), typhoid, and many more. If the human body is exposed to bacteria that the body does not recognize as helpful, the immune system will attack them.
Explanation:
HOPE IT HELPS
Answer:
Random mutations led to evolution of pesticide resistance genes in bed bugs.
Explanation:
Random mutations in genome of bed bug imparted them the pesticide resistance. Since the bed bugs having the mutation of pesticide resistance were able to survive under presence of pesticides, this variation was favored by natural selection. The bugs with pesticide resistance transmitted this trait to their progeny. In time, the bed bug population consisted of most of the bugs having the pesticide resistance.
Answer:
The options
a. New combinations of genes yielding genotypes of greater fitness
b. Few heterozygotes because of underdominance
c. Frequency-dependent selection, leading to fluctuations in fitness
d. Heterozygotes with greater fitness, owing to overdominance
e. A random assortment of genotypes because of genetic drift
The CORRECT ANSWER IS b.
b. Few heterozygotes because of under dominance
Explanation:
In genetics, underdominance (at times called "negative overdominance") is the opposite of overdominance.
It is the selection against the heterozygote, that leads to disruptive selection and divergent genotypes. It occurs in cases of inferior and reduced fitness (As in our case study, it is the different chromosomal fusions and inversions)
of the heterozygotic genotype to the dominant or recessive homozygotic genotype. It is unstable as it causes fixation of either allele.
Another example is the African butterfly species Pseudacraea eurytus, which makes use of Batesian mimicry to avoid predation. This species carries two alleles that gives a coloration that is alike to a different local butterfly species that is harmful to its predator. The butterflies who are heterozygous for this trait are observed to be intermediate in coloration and thus encounter an higher risk of predation and a decrease in the total fitness.