X = 1 is the correct answer.
Using the log properties, remember that Log(base2)2 = 1
3log(base2)2x = 3
divide both sides by 3
log(base 2)2x = 1
log(base2)2 = 1
1 * x = 1
x = 1
Answer:
x = 3 ± 
or
x = 3 +
, x = 3 - 
Step-by-step explanation:
given f(x) = 2(x - 3)^2 - 8, find when f(x) = 40
So, we plug in 40 for f(x) in the 1st equation and solve for x. (Aim to got x on its own)
40 = 2 (x - 3)^2 - 8
+ 8 + 8
-----------------------------
48 = 2 (x - 3)^2
/2 /2
-----------------------------
24 = (x - 3)^2
square root both sides
--------------------
= x - 3
x = 3 ± 
Answer:
15
Step-by-step explanation:
(0 - 9)^2 + (- 10 - 2)^2
(-9)^2 + (-12)^2
81 + 144
sq rt of 225