Shaded area = area of the hexagon – area of the pentagon + area of the square – area of the equilateral triangle. This can be obtained by finding each shaded area and then adding them.
<h3>Find the expression for the area of the shaded regions:</h3>
From the question we can say that the Hexagon has three shapes inside it,
Also it is given that,
An equilateral triangle is shown inside a square inside a regular pentagon inside a regular hexagon.
From this we know that equilateral triangle is the smallest, then square, then regular pentagon and then a regular hexagon.
A pentagon is shown inside a regular hexagon.
- Area of first shaded region = Area of the hexagon - Area of pentagon
An equilateral triangle is shown inside a square.
- Area of second shaded region = Area of the square - Area of equilateral triangle
The expression for total shaded region would be written as,
Shaded area = Area of first shaded region + Area of second shaded region
Hence,
⇒ Shaded area = area of the hexagon – area of the pentagon + area of the square – area of the equilateral triangle.
Learn more about area of a shape here:
brainly.com/question/16501078
#SPJ1
Answer:
the answer is 33 9/11
Step-by-step explanation:
multiply the fractions
.
.
<span>40.19 + 2.06x
I think its the right one, not sure though
Hope this helped</span>
The ratio of the distance between the foci and the length of the <em>major</em> axis is called eccentricity.
<h3>
Definitions of dimensions in ellipses</h3>
Dimensionally speaking, an ellipse is characterized by three variables:
- Length of the <em>major</em> semiaxis (
). - Length of the <em>minor</em> semiaxis (
). - Distance between the foci and the center of the ellipse (
).
And there is the following relationship:
(1)
Another variable that measure how "similar" is an ellipse to a circle is the eccentricity (
), which is defined by the following formula:
,
(2)
The greater the eccentricity, the more similar the ellipse to a circle.
Therefore, the ratio of the distance between the foci and the length of the <em>major</em> axis is called eccentricity. 
To learn more on ellipses, we kindly invite to check this verified question: brainly.com/question/19507943
Answer:
Step-by-step explanation:
the image isnt showing