Answer:
(0, 1).
Method 1 (Substitution):
Substituting our two y's, we get the following:

Thus, the only set of solutions is (0, 1). A quick sketch (either by hand or on Desmos) can confirm this.
Method 2 (Elimination):
We have two equations. We'll let the top one be equation 1 and the bottom one be equation 2. Eliminating as many variables as we can, we subtract (2) from (1) to get:
0 = 3x => x = 0.
So the only set of solutions is (0, 1).
Method 3 (Gaussian elimination):
We can place this in an augmented matrix and row reduce.
![\left[\begin{array}{cccc}1&5&1 & 1\\1&2&1 & 1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%265%261%20%26%201%5C%5C1%262%261%20%26%201%5Cend%7Barray%7D%5Cright%5D)
Row reducing this gives us:
![\left[\begin{array}{cccc}1&5&1 & 1\\0&3&0 & 0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%265%261%20%26%201%5C%5C0%263%260%20%26%200%5Cend%7Barray%7D%5Cright%5D)
This tells us that the only solution for x is x = 0 (since we read this as "3x = 0") and thus, the only solution we get is (0, 1).
Answer:
224 in^3
Step-by-step explanation:
The foruma appropriate to the calculation of the cone's volume is ...
V = (1/3)Bh
where B represents the area of the base and h represents the height.
For your numbers, this is ...
V = (1/3)·(48 in^2)(14 in) = (16 in^2)(14 in) = 224 in^3
Answer:
B
Step-by-step explanation:
Answer:
15
Step-by-step explanation:
If you divide 32 by 2 you will get 16, therefore if you take the number before 16 and the number after 16 and add them together they will still equal 32. 15 + 17 = 32. The smaller number is 15.