You would have to evaporate the water to get just the sugar
When 3.66 g of KOH (∆Hsol = -57.6 kJ/mol) is dissolved in 150.0 mL of solution, it causes a temperature change of 5.87 °C.
The enthalpy of solution of KOH is -57.6 kJ/mol. We can calculate the heat released by the solution (Qr) of 3.66 g of KOH considering that the molar mass of KOH is 56.11 g/mol.

According to the law of conservation of energy, the sum of the heat released by the solution of KOH (Qr) and the heat absorbed by the solution (Qa) is zero.

150.0 mL of solution with a density of 1.02 g/mL were prepared. The mass (m) of the solution is:

Given the specific heat capacity of the solution (c) is 4.184 J/g・°C, we can calculate the change in the temperature (ΔT) of the solution using the following expression.

When 3.66 g of KOH (∆Hsol = -57.6 kJ/mol) is dissolved in 150.0 mL of solution, it causes a temperature change of 5.87 °C.
Learn more: brainly.com/question/4400908
The normality that would be calculated will be to high because the change in volume will be greater than the actual change in volume. if the buret tip is not filled when reading the initial volume, the actual volume should be lesser with that reading. so if you will you the higher reading the change in volume or the volume you use in titration will be higher than the actual
Hello!
To calculate the
household concentration of NaOH we need to use the
dilution formula, clearing for M2, as you can see in the equation below:

Now, we input the values from the data we have onto this equation. M1=19,1 M; V1=10 mL; V2=400 mL, and solve the equation to get the result:

So, the
household concentration of NaOH will be 0,48 M
Have a nice day!