Answer:
The answer is 0.31
Step-by-step explanation:
<u>Old Method                                       New Method                          .</u>
Mean                      73.5625                  Mean            75.70588
Standard Error        3.143736             Standard Error  2.923994
Median                    72                          Median            75
Mode                       90                          Mode               64
Standard deviation  12.57494           Standard deviation 12.05594
Sample Variance     158.1292            Sample Variance     145.3456
Kurtosis                     -1.14544              Kurtosis                   -0.76646
Skewness                 0.171025             Skewness                0.091008
Range                       39                        Range                      41
Minimum                   55                        Minimum                 56
Maximum                  94                        Maximum                 97
Sum                          1177                        Sum                        1287
Count                         16                         Count                      17
State the hypotheses. The first step is to state the null hypothesis and an alternative hypothesis.
Null hypothesis: μNew< μOld
Alternative hypothesis: μNew > μOld
Note that these hypotheses constitute a one-tailed test. The null hypothesis will be rejected if the mean difference between sample means is too small.
Formulate an analysis plan. For this analysis, the significance level is 0.05. Using sample data, we will conduct a two-sample t-test of the null hypothesis.
Analyze sample data. Using sample data, we compute the standard error (SE), degrees of freedom (DF), and the t statistic test statistic (t).

DF = 31

where s1 is the standard deviation of sample 1, s2 is the standard deviation of sample 2, n1 is the size of sample 1, n2 is the size of sample 2, x1 is the mean of sample 1, x2 is the mean of sample 2, d is the hypothesized difference between population means, and SE is the standard error.
The observed difference in sample means produced a t statistic of - 0.499. We use the t Distribution Calculator to find P(t < - 0.499) = 0.311
Therefore, the P-value in this analysis is 0.311.
Interpret results. Since the P-value (0.311) is greater than the significance level (0.05), we cannot reject the null hypothesis.
From the above test we do have sufficient evidence in the favor of the claim that new method is efficient than the old method.