1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katovenus [111]
3 years ago
7

Two trains leave the station at the same time, one heading east and the other west. The eastbound train travels at a rate of 65

miles per hour. The westbound train travels at a rate of 85 miles per hour. How long will it take for the two trains to be 210 miles apart?
Mathematics
1 answer:
Bezzdna [24]3 years ago
6 0

Answer:

10.5 hours

Step-by-step explanation:

You might be interested in
a guy wire 15 ft long runs from the top of a pole to spot on the ground. if the height of the pole is 3 ft more than the distanc
Murrr4er [49]
18. The answer is 18 because the wire is 15ft and the pole is 3ft taller than the wire
6 0
4 years ago
Hi, how do we do this question?​
Nutka1998 [239]

Answer:

\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int {\frac{2x}{3x + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx
  4. [1st Integral] Reverse Power Rule:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 3x + 1
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3 \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx
  2. [Integral] U-Substitution:                                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du
  3. [Integral] Logarithmic Integration:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C
  4. Back-Substitute:                                                                                            \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C
  5. Factor:                                                                                                           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3}  \bigg) + C
  6. Rewrite:                                                                                                         \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
On a coordinate plane, how are the locations of the points (7. -4) and (-7, 4) related?
Ksivusya [100]

Answer:OC

Step-by-step explanation:

8 0
3 years ago
Every bike at a sports store is on sale for 40% off the regular price. About how much would a bike cost that regularly sells for
Neko [114]

Answer:

$140-40%= 84

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
How many inches smaller is a 6.17 inch worm than a 10.63 inch worm?
mario62 [17]
The worm is approximately 4.46 inches smaller than the other one.
8 0
3 years ago
Other questions:
  • The length of the base of an isosceles triangle is 15. what is the range of possible lengths l for each leg?
    8·1 answer
  • For all pairs of real numbers N and P, where N =5P+ 4, p=? Please help!!!!
    12·1 answer
  • PLZ help super fast thanks
    15·1 answer
  • A recipe calls for 1 1/2 cups of flour, 3/4 cup of white sugar, and 1/3 cup of brown sugar. The recipe makes 6 servings. 1) How
    7·1 answer
  • Solve the rational equation 4x-1/12 = 11/12 . x = 2.5 x = 2.7 x = 3 x = 4
    15·2 answers
  • P(5,12)<br> find cosec theta?
    15·1 answer
  • Josiah had 128 toy cars. If he organizes them into groups of 7 , how many cars will be in the final group?
    11·1 answer
  • A rectangular prism has a length of 12.5 ft, and a width of 9ft , and a height of 6.5 feet. what is the volume of the prism
    6·1 answer
  • Is the equation 5x = 7x always, sometimes, or never true? Explain.
    13·1 answer
  • Someone help plz make sure it’s right plz will mark brainiest if it is:)
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!