1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
serious [3.7K]
3 years ago
10

One Step EquationsSolving with +/-Solve each equation.1) 3=n-7​

Mathematics
2 answers:
n200080 [17]3 years ago
8 0
Answer: 10
You can use the inverse operations
Naily [24]3 years ago
3 0

Answer:

n=10

Step-by-step explanation:

Add 7 to 3

You might be interested in
What is 2x+3=9?????????????
ale4655 [162]

Answer:

3

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
There is 75 gallons of water into the pool every hour if the pool can hold 6,750 gallons how long will it take to fill the pool?
Andreyy89

Answer:

90 hours

Step-by-step explanation:

The rate at which water enters the pool is

 75 gallons

-------------------

       1 hour

This is equivalent to

         1 hour per 75 gallons, leading to:

        1 hour

  -------------------- * 6,750 gallons   =   90 hours

      75 gallons

3 0
3 years ago
X • 1 + x/1 = <br><br> A. 1<br> B. x<br> C. 1 + x<br> D. 2x
Mkey [24]

Answer:

D. D is the correct answer

5 0
3 years ago
Evaluate the integral, show all steps please!
Aloiza [94]

Answer:

\displaystyle \int \dfrac{1}{(9-x^2)^{\frac{3}{2}}}\:\:\text{d}x=\dfrac{x}{9\sqrt{9-x^2}} +\text{C}

Step-by-step explanation:

<u>Fundamental Theorem of Calculus</u>

\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.

Given indefinite integral:

\displaystyle \int \dfrac{1}{(9-x^2)^{\frac{3}{2}}}\:\:\text{d}x

Rewrite 9 as 3²  and rewrite the 3/2 exponent as square root to the power of 3:

\implies \displaystyle \int \dfrac{1}{\left(\sqrt{3^2-x^2}\right)^3}\:\:\text{d}x

<u>Integration by substitution</u>

<u />

<u />\boxed{\textsf{For }\sqrt{a^2-x^2} \textsf{ use the substitution }x=a \sin \theta}

\textsf{Let }x=3 \sin \theta

\begin{aligned}\implies \sqrt{3^2-x^2} & =\sqrt{3^2-(3 \sin \theta)^2}\\ & = \sqrt{9-9 \sin^2 \theta}\\ & = \sqrt{9(1-\sin^2 \theta)}\\ & = \sqrt{9 \cos^2 \theta}\\ & = 3 \cos \theta\end{aligned}

Find the derivative of x and rewrite it so that dx is on its own:

\implies \dfrac{\text{d}x}{\text{d}\theta}=3 \cos \theta

\implies \text{d}x=3 \cos \theta\:\:\text{d}\theta

<u>Substitute</u> everything into the original integral:

\begin{aligned}\displaystyle \int \dfrac{1}{(9-x^2)^{\frac{3}{2}}}\:\:\text{d}x & = \int \dfrac{1}{\left(\sqrt{3^2-x^2}\right)^3}\:\:\text{d}x\\\\& = \int \dfrac{1}{\left(3 \cos \theta\right)^3}\:\:3 \cos \theta\:\:\text{d}\theta \\\\ & = \int \dfrac{1}{\left(3 \cos \theta\right)^2}\:\:\text{d}\theta \\\\ & =  \int \dfrac{1}{9 \cos^2 \theta} \:\: \text{d}\theta\end{aligned}

Take out the constant:

\implies \displaystyle \dfrac{1}{9} \int \dfrac{1}{\cos^2 \theta}\:\:\text{d}\theta

\textsf{Use the trigonometric identity}: \quad\sec^2 \theta=\dfrac{1}{\cos^2 \theta}

\implies \displaystyle \dfrac{1}{9} \int \sec^2 \theta\:\:\text{d}\theta

\boxed{\begin{minipage}{5 cm}\underline{Integrating $\sec^2 kx$}\\\\$\displaystyle \int \sec^2 kx\:\text{d}x=\dfrac{1}{k} \tan kx\:\:(+\text{C})$\end{minipage}}

\implies \displaystyle \dfrac{1}{9} \int \sec^2 \theta\:\:\text{d}\theta = \dfrac{1}{9} \tan \theta+\text{C}

\textsf{Use the trigonometric identity}: \quad \tan \theta=\dfrac{\sin \theta}{\cos \theta}

\implies \dfrac{\sin \theta}{9 \cos \theta} +\text{C}

\textsf{Substitute back in } \sin \theta=\dfrac{x}{3}:

\implies \dfrac{x}{9(3 \cos \theta)} +\text{C}

\textsf{Substitute back in }3 \cos \theta=\sqrt{9-x^2}:

\implies \dfrac{x}{9\sqrt{9-x^2}} +\text{C}

Learn more about integration by substitution here:

brainly.com/question/28156101

brainly.com/question/28155016

4 0
2 years ago
Randy hung a total of 900 feet of Christmas lights on the exterior of his house this past holiday season. If 1 foot equals 30.48
bulgar [2K]

Answer:

900 divided by 30.48 =

Step-by-step explanation:

<u> 0 0. 0 3 3</u>

9 0 0 3 0. 4 8 0

   − 0        

     3 0      

<u>    −   0   </u>  

     3 0 4    

<u>    −     0 </u>  

     3 0 4 8  

<u>    − 2 7 0 0 </u>

       3 4 8 0

     − <u>2 7 0 0</u>

         7 8 0

Your answer is now many

Branlist plz

5 0
3 years ago
Read 2 more answers
Other questions:
  • Isiah determined that 5a2 is the GCF of the polynomial
    6·2 answers
  • Ashley uses
    8·2 answers
  • Find two numbers whose sum is 15 and whose product is 36
    12·1 answer
  • Which of the following equations is 2x + 3y = 6 written in slope-intercept form.
    7·2 answers
  • How many 3/4 cup servings are there in 8 cups of berries?
    12·1 answer
  • Given: m∠V=103°, m∠VRT=71°, RS ∥ VU Find: m∠TRS, m∠U
    15·1 answer
  • Anika was shown a reduction of a complex figure.
    7·2 answers
  • If tan=3 by 4 find the value tan+sec​
    7·2 answers
  • Solve 1/x-1/x-5=1/3x​
    12·1 answer
  • Jill wants to make melonade for her family reunion. She needs enough lemonade for 60 people to each have 1 cup. How many gallons
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!