1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ira [324]
3 years ago
15

NEED ANSWER ASAP MARKING BRAINLIEST

Mathematics
1 answer:
KonstantinChe [14]3 years ago
6 0

Answer:15.072

Step-by-step explanation:

You might be interested in
What's -5√3(2+√5)?<br><br><br> h e l p .
riadik2000 [5.3K]
Here you go hope it helps

6 0
2 years ago
Read 2 more answers
Choose the correct expansions. Click to select the correct answers. Click again to unselect answers. Leave the incorrect answers
Nadusha1986 [10]
<span>(5 x 0.001) 0.172 (1 x 0.1) + (7 x .01) + (2 x 0.001)</span>
3 0
3 years ago
The graphs of the quadratic functions f(x) = 6 – 10x2 and g(x) = 8 – (x – 2)2 are provided below. Observe there are TWO lines si
natta225 [31]

Answer:

a) y = 7.74*x + 7.5

b)  y = 1.148*x + 6.036

Step-by-step explanation:

Given:

                                  f(x) = 6 - 10*x^2

                                  g(x) = 8 - (x-2)^2

Find:

(a) The line simultaneously tangent to both graphs having the LARGEST slope has equation

(b) The other line simultaneously tangent to both graphs has equation,

Solution:

- Find the derivatives of the two functions given:

                                f'(x) = -20*x

                                g'(x) = -2*(x-2)

- Since, the derivative of both function depends on the x coordinate. We will choose a point x_o which is common for both the functions f(x) and g(x). Point: ( x_o , g(x_o)) Hence,

                                g'(x_o) = -2*(x_o -2)

- Now compute the gradient of a line tangent to both graphs at point (x_o , g(x_o) ) on g(x) graph and point ( x , f(x) ) on function f(x):

                                m = (g(x_o) - f(x)) / (x_o - x)

                                m = (8 - (x_o-2)^2 - 6 + 10*x^2) / (x_o - x)

                                m = (8 - (x_o^2 - 4*x_o + 4) - 6 + 10*x^2)/(x_o - x)

                                m = ( 8 - x_o^2 + 4*x_o -4 -6 +10*x^2) /(x_o - x)

                                m = ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x)

- Now the gradient of the line computed from a point on each graph m must be equal to the derivatives computed earlier for each function:

                                m = f'(x) = g'(x_o)

- We will develop the first expression:

                                m = f'(x)

                                ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

Eq 1.                          (-2 - x_o^2 + 4*x_o + 10*x^2) = -20*x*x_o + 20*x^2

And,

                              m = g'(x_o)

                              ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

                              -2 - x_o^2 + 4*x_o + 10*x^2 = -2(x_o - 2)(x_o - x)

Eq 2                       -2 - x_o^2 + 4*x_o+ 10*x^2 = -2(x_o^2 - x_o*(x + 2) + 2*x)

- Now subtract the two equations (Eq 1 - Eq 2):

                              -20*x*x_o + 20*x^2 + 2*x_o^2 - 2*x_o*(x + 2) + 4*x = 0

                              -22*x*x_o + 20*x^2 + 2*x_o^2 - 4*x_o + 4*x = 0

- Form factors:       20*x^2 - 20*x*x_o - 2*x*x_o + 2*x_o^2 - 4*x_o + 4*x = 0

                              20*x*(x - x_o) - 2*x_o*(x - x_o) + 4*(x - x_o) = 0

                               (x - x_o)(20*x - 2*x_o + 4) = 0  

                               x = x_o   ,     x_o = 10x + 2    

- For x_o = 10x + 2  ,

                               (g(10*x + 2) - f(x))/(10*x + 2 - x) = -20*x

                                (8 - 100*x^2 - 6 + 10*x^2)/(9*x + 2) = -20*x

                                (-90*x^2 + 2) = -180*x^2 - 40*x

                                90*x^2 + 40*x + 2 = 0  

- Solve the quadratic equation above:

                                 x = -0.0574, -0.387      

- Largest slope is at x = -0.387 where equation of line is:

                                  y - 4.502 = -20*(-0.387)*(x + 0.387)

                                  y = 7.74*x + 7.5          

- Other tangent line:

                                  y - 5.97 = 1.148*(x + 0.0574)

                                  y = 1.148*x + 6.036

6 0
2 years ago
What is 5000 g equal to in kilograms?
MrRa [10]
A kilogram is 1000 grams. Therefore, 5000 g is 5 kg
5 0
3 years ago
Read 2 more answers
Will (-2)^2 and -2^2 have the same solution? why or why not
nexus9112 [7]
Doing this so I can ask sorry
5 0
2 years ago
Other questions:
  • What is the value of 13 x [ 4 + (9-2)]?
    9·1 answer
  • While in Europe, if you drive 117 km per day, how much money would you spend on gas in one week if gas costs 1.10 euros per lite
    9·1 answer
  • Pretty please help me with this‼️
    15·1 answer
  • I need to know the answer to this question I am realky stuck plz help
    6·1 answer
  • Estimate a 20% tip on a dinner bill of $171.81 by first rounding the bill amount to the nearest ten dollars.
    7·1 answer
  • Which ordered pair describes a point that should be removed from the graph so that the graph represents a function.
    6·2 answers
  • What is 34.5085066857 rounded to the 4th decimal place
    8·2 answers
  • The farm raises some rabbits and native chickens. The number of native chickens is six times the number of rabbits, with a total
    6·1 answer
  • Tickets at an amusement park are $25 for children and $45 for adults. If the Jones family has $200 cash and they have two childr
    11·2 answers
  • Nvm I don't need no help
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!