Answer:
D. Rewrite one side (or both) using the distributive property, Yes
Step-by-step explanation:
How can we get Equation BBB from Equation AAA? Based on the previous answer, are the equations equivalent? In other words, do they have the same solution?
Answer:
Step-by-step explanation:
what are the options
Answer: 37 units
Step-by-step explanation:
This also works as the height of the triangle.
This also works as the base of the triangle.
Let's call pink ''a'', and blue ''b''. The side we're looking for ''c'' is the hypothenuse.
To find the values of a and b, use the area formula of a square and solve for a side. In this case, since we're going to need the squared values, this step can be omitted.

![s=\sqrt[]{A}](https://tex.z-dn.net/?f=s%3D%5Csqrt%5B%5D%7BA%7D)
Let's work with Blue.
![s=\sqrt[]{144units^2} \\s=12units](https://tex.z-dn.net/?f=s%3D%5Csqrt%5B%5D%7B144units%5E2%7D%20%5C%5Cs%3D12units)
Now Pink.
![s=\sqrt[]{1225units^2}\\s=35units](https://tex.z-dn.net/?f=s%3D%5Csqrt%5B%5D%7B1225units%5E2%7D%5C%5Cs%3D35units)
So we have a triangle with a base of 35 units and a height of 12 units.
Now let's use the pythagoream's theorem to solve.
![c^2=a^2+b^2\\c=\sqrt[]{a^2+b^2} \\c=\sqrt[]{(12units)^2+(35units)^2}\\c=\sqrt[]{144units^2+1225units^2}\\ c=\sqrt[]{1369units^2}\\ c=37units](https://tex.z-dn.net/?f=c%5E2%3Da%5E2%2Bb%5E2%5C%5Cc%3D%5Csqrt%5B%5D%7Ba%5E2%2Bb%5E2%7D%20%5C%5Cc%3D%5Csqrt%5B%5D%7B%2812units%29%5E2%2B%2835units%29%5E2%7D%5C%5Cc%3D%5Csqrt%5B%5D%7B144units%5E2%2B1225units%5E2%7D%5C%5C%20c%3D%5Csqrt%5B%5D%7B1369units%5E2%7D%5C%5C%20c%3D37units)
The answer is B. hope that help
Do you guys do common core becase there would be two type's of a surface area!