Answer
2.25
Step-by-step explanation:
Answer:
The slope is 10 and the y intercept 0
Step-by-step explanation:
m is 10 and c is 0. The reason why is because m is the slope and c is the y intercept.
Answer:
Therefore the concentration of salt in the incoming brine is 1.73 g/L.
Step-by-step explanation:
Here the amount of incoming and outgoing of water are equal. Then the amount of water in the tank remain same = 10 liters.
Let the concentration of salt be a gram/L
Let the amount salt in the tank at any time t be Q(t).

Incoming rate = (a g/L)×(1 L/min)
=a g/min
The concentration of salt in the tank at any time t is =
g/L
Outgoing rate =



Integrating both sides

[ where c arbitrary constant]
Initial condition when t= 20 , Q(t)= 15 gram


Therefore ,
.......(1)
In the starting time t=0 and Q(t)=0
Putting t=0 and Q(t)=0 in equation (1) we get









Therefore the concentration of salt in the incoming brine is 1.73 g/L
Answer:
a. 9.5x + 6.5(x+c) < 8 when c>0
b. Must be one child more than the no. of adults.
Step-by-step explanation:
For Cinema 1:
for adult = $9.50
for child = $6.50
For Cinema 2:
Per person regardless of age = $8.00
First of all, we will find out the condition when per person rates in both cinema are equal.
Assume x = no. of adults
y = no. of children
Rate per person in Cinema I = Rate per person in Cinema II
(9.5x + 6.5y)/(x+y) = 8
9.5x + 6.5y = 8(x+y)
9.5x + 6.5y = 8x + 8y
9.5x-8x = 8y-6.5y
=> x = y
So rates are equal when no. of adults equals no. of children
For Cinema I to have better rates, no. of children should be atleast 1 more than the no. of adult. In this way the rate per person of Cinema I will be less than 8
Hence we form an inequality when y = x+c and c > 0
9.5x + 6.5(x+c) < 8 when c>0
Hence there must be 1 more children than the no. of adults attending Cinema I for it to be a better deal.
Answer:
I think that is enlargement
Step-by-step explanation:
i like helping out people oh by the way i'm new will you be my friend