Use Law of Cooling:

T0 = initial temperature, TA = ambient or final temperature
First solve for k using given info, T(3) = 42

Substituting k back into cooling equation gives:

At some time "t", it is brought back inside at temperature "x".
We know that temperature goes back up to 71 at 2:10 so the time it is inside is 10-t, where t is time that it had been outside.
The new cooling equation for when its back inside is:

Solve for x:

Sub back into original cooling equation, x = T(t)

Solve for t:

This means the exact time it was brought indoors was about 2.5 seconds before 2:05 PM
First, multiply the radius by itself. 5x5=25. Then multiply by pi, or 3.14. 25x3.14=78.5. The area of the circle is 78.5units^2. Hope this helps! ;)
This is tricky. Fasten your seat belt. It's going to be a boompy ride.
If it's a 12-hour clock (doesn't show AM or PM), then it has to gain
12 hours in order to appear correct again.
How many times must it gain 3 minutes in order to add up to 12 hours ?
(12 hours) x (60 minutes/hour) / (3 minutes) = 240 times
It has to gain 3 minutes 240 times, in order for the hands to be in the correct positions again. Each of those times takes 1 hour. So the job will be complete in 240 hours = <em>10 days .</em>
Check:
In <u>10</u> days, there are <u>240</u> hours.
The clock gains <u>3</u> minutes every hour ==> <u>720</u> minutes in 240 hours.
In 720 minutes, there are 720/60 = <u>12 hours</u> yay !
_________________________________
If you are on a military base and your clocks have 24-hour faces,
then at the same rate of gaining, one of them would take 20 days
to appear to be correct again.
_________________________________
Note:
It doesn't have to be an analog clock. Cheap digital clocks can
gain or lose time too (if they run on a battery and don't reference
their rate to the 60 Hz power that they're plugged into).