Answer:

Step-by-step explanation:
The question presumes you have access to a computer algebra system. The one I have access to provided the output in the attachment. The list at the bottom is the list of the first four derivatives of f(x).
__
The derivatives alternate signs, so (-1)^k will be a factor.
The numerators start at 17 and increase by increasing factors: 2, 3, 4, indicating k! will be a factor.
The denominators have a degree that is k+1.
Putting these observations together, we can write an expression for the k-th derivative of f(x):

Answer:
2) 162°, 72°, 108°
3) 144°, 54°, 126°
Step-by-step explanation:
1) Multiply the equation by 2sin(θ) to get an equation that looks like ...
sin(θ) = <some numerical expression>
Use your knowledge of the sines of special angles to find two angles that have this sine value. (The attached table along with the relations discussed below will get you there.)
____
2, 3) You need to review the meaning of "supplement".
It is true that ...
sin(θ) = sin(θ+360°),
but it is also true that ...
sin(θ) = sin(180°-θ) . . . . the supplement of the angle
This latter relation is the one applicable to this question.
__
Similarly, it is true that ...
cos(θ) = -cos(θ+180°),
but it is also true that ...
cos(θ) = -cos(180°-θ) . . . . the supplement of the angle
As above, it is this latter relation that applies to problems 2 and 3.
_Award brainliest if helped!
if x =2 , 6(2) + 3y = 15
3y = 15-12
y = 1
if x=5, 6(5) + 3 y = 15
3y = -15
y= -5
The answer to this question is B
The first one equals 0.00116
The second one equals 195,000
the third one equals 0.0286
and the fourth one equals 87,310,000,000,000,000
The smallest one is A 0.00116
Hope this helps, Jesus loves you!