Question:
Find the point (,) on the curve
that is closest to the point (3,0).
[To do this, first find the distance function between (,) and (3,0) and minimize it.]
Answer:

Step-by-step explanation:
can be represented as: 
Substitute
for 

So, next:
Calculate the distance between
and 
Distance is calculated as:

So:


Evaluate all exponents

Rewrite as:


Differentiate using chain rule:
Let


So:



Chain Rule:




Substitute: 

Next, is to minimize (by equating d' to 0)

Cross Multiply

Solve for x


Substitute
in 

Split

Rationalize



Hence:

Answer:
the worker is incorrect
Step-by-step explanation:
Angle DAC measures more than angle BDA
Answer:
The answer is 8.34
U have to use the SOH CAH TOA method
In this case I used tan
so,
tan 50= BC/7
solve for BC= 7* tan 50= 8.34
Answer:
Step-by-step explanation:
step a system of two equations c = child ticket a = adult ticket
eq 1) 2c + 1a = 8.2 multiply by 2
eq 2) 3c + 2a = 14.1
I will multiply eq 1 times TWO and subtract eq 2 from eq 1a)
eq 1a) 4c + 2a = 16.4
eq 2) 3c + 2a = 14.1
subtract (4c - 3c) + (2a -2a) = 16.4 - 14.1
c + 0 = 2.3 euros for one child ticket
Now find the adult ticket price, plug 2.3 for c into eq 1)
eq 1) 2c + 1a = 8.2
eq 1) 2(2.3) + 1a = 8.2 solve for a
4.6 + a = 8.2 substract 4.6 from both sides
a = 8.2 - 4.6
= 3.6 euros for one adult ticket
double check using eq 2) we know c and a values
eq 2) 3c + 2a = 14.1
eq 2) 3(2.3) + 2(3.6) = 14.1
6.9 + 7.2 = 14.1
14.1 = 14.1