Answer:Your left hand side evaluates to:
m+(−1)mn+(−1)m+(−1)mnp
and your right hand side evaluates to:
m+(−1)mn+(−1)m+np
After eliminating the common terms:
m+(−1)mn from both sides, we are left with showing:
(−1)m+(−1)mnp=(−1)m+np
If p=0, both sides are clearly equal, so assume p≠0, and we can (by cancellation) simply prove:
(−1)(−1)mn=(−1)n.
It should be clear that if m is even, we have equality (both sides are (−1)n), so we are down to the case where m is odd. In this case:
(−1)(−1)mn=(−1)−n=1(−1)n
Multiplying both sides by (−1)n then yields:
1=(−1)2n=[(−1)n]2 which is always true, no matter what n is
Answer:
No solution
Step-by-step explanation:
There is one variable. so it can't be two solutions. To the rest, we need to solve the equation.
5-2x=3+x-4-3x
5=3-4
5=-1
Impossible!!!
so no solution.
Hope this helps plz mark brainliest :D
Answer:
512
Step-by-step explanation:
the number of subsets of the set {1, 2, 3, ..., 9} is : 2^9 = 512
Answer:
Step-by-step explanation:
In order to write the equation of the line perpendicular to the given line, we first have to know what the slope of the given line is, and there's no way to tell by looking at it in its current form, which is standard. We need to solve that equation for y to determine the slope of that line. Solving for y:
and
3y = 4x - 5 (just change all the signs so our y term isn't negative anymore...yes, you're "allowed" to do that!) and
So we can see now that the slope of this line is 4/3. That means that the perpendicular slope is -3/4. Passing through the given point (3, 5):
* and
and
so
** and, in standard form:
4y = -3x + 29 and
3x + 4y = 29***
* : point-slope form
** : slope-intercept form
*** : standard form