Explanation:If the mass of the object stays the same but the volume of the object decreases then its density becomes greater. If the volume of the object stays the same but the mass of the object increases then its density becomes greater.
Answer:
2812.6 g of H₂SO₄
Explanation:
From the question given above, the following data were obtained:
Mole of H₂SO₄ = 28.7 moles
Mass of H₂SO₄ =?
Next, we shall determine the molar mass of H₂SO₄. This can be obtained as follow:
Molar mass of H₂SO₄ = (1×2) + 32 + (16×4)
= 2 + 32 + 64
= 98 g/mol
Finally, we shall determine the mass of H₂SO₄. This can be obtained as follow:
Mole of H₂SO₄ = 28.7 moles
Molar mass of H₂SO₄ =
Mass of H₂SO₄ =?
Mole = mass / Molar mass
28.7 = Mass of H₂SO₄ / 98
Cross multiply
Mass of H₂SO₄ = 28.7 × 98
Mass of H₂SO₄ = 2812.6 g
Thus, 28.7 mole of H₂SO₄ is equivalent to 2812.6 g of H₂SO₄
The pressure of the gas is expected to increase in accordance to Boyle's law.
<h3>What is Boyle's law?</h3>
Boyle's law states that, the volume of a given mass of gas is inversely proportional to its pressure at constant temperature.
By implication, when the piston is lowered and the volume of the gas is decreased, the pressure of the gas is expected to increase in accordance to Boyle's law.
Learn more about Boyle's law: brainly.com/question/1437490
Answer: The partial pressure of the dry oxygen is 742 torr
Explanation:
Dalton's Law of Partial Pressure states that the total pressure exerted by a mixture of gases is the sum of partial pressure of each individual gas present. Thus 
Given; Total pressure = 762 torr
partial pressure of water = 19.8 torr
partial pressure of dry oxygen = ? torr
Total pressure = partial pressure of water + partial pressure of dry oxygen
762 torr = 19.8 torr = partial pressure of dry oxygen
partial pressure of dry oxygen = 742 torr
The partial pressure of the dry oxygen is 742 torr
Answer: 120N
Explanation:
Given variables are:
force needed = ?
mass of object = 60 kg
acceleration = 2.0 m/s²
Since the magnitude of force depends on the mass of the object and the acceleration by which it moves.
i.e Force = mass x acceleration
Force = 60 kg x 2.0 m/s²
Force = 120 N
Thus, 120 Newton of force is needed to make 60 kg object accelerate at a rate of 2.0 m/s²