Answer:
Explanation:
Ok so an atom is each ball. So in the first one there are 5 balls. In the second one there are 4 and so on. A molecule contains more than two balls. So they are all molecules. For the counting reactants and products, count how many balls are to the left of the arrow which is your number of reactants and count the balls to the right to find the number of product atoms.
<u>Answer:</u> The rate law expression for the given reaction is written below.
<u>Explanation:</u>
Rate law is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
For the given chemical equation:

Rate law expression for the reaction:
![\text{Rate}=k[NO]^2[H_2]^2](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5E2%5BH_2%5D%5E2)
Hence, the rate law expression for the given reaction is written above.
Answer:
chlorine dioxide is empirical formula for CLO2.
Answer: Option (a) is the correct answer.
Explanation:
A protein part of an enzyme is known as an apoenzyme. An apoenzyme combines with a cofactor, it is known as holoenzyme.
Without a cofactor an apoenzyme cannot function as cofactor helps in the formation of an active enzyme system and provides a specific site on enzyme for the substrate.
Whereas a non-protein chemical compound or metal ion that helps in the activity of enzyme as a catalyst is known as a cofactor. A metal ion cofactor can be bound directly to the enzyme or to a coenzyme.
The organic non-protein molecules which bind to the protein molecule to form an active enzyme is known as a coenzyme. Coenzymes are small size molecules which help the enzymes to act as a catalyst.
Therefore, we can conclude that the statement an apoenzyme can catalyze its reaction without its cofactor, is false.