Answer:
2x-z=0 is the equation of the plane.
Step-by-step explanation:
Given that the plane passes through the points (1,0,2) and (-1,1,-2)
and also origin.
Hence equation of the plane passing through three points we can use
Any plane passing through 3 given points is given as
![\left[\begin{array}{ccc}x-x_1&y-y_1&z-z_1\\x_2-x_1&y_2-y_1&z_2-z_1\\x_3-x_1&y_3-y_1&z_3-z_1\end{array}\right] =0](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx-x_1%26y-y_1%26z-z_1%5C%5Cx_2-x_1%26y_2-y_1%26z_2-z_1%5C%5Cx_3-x_1%26y_3-y_1%26z_3-z_1%5Cend%7Barray%7D%5Cright%5D%20%3D0)
Substitute the three points to get
![\left[\begin{array}{ccc}x-1&y&z-2\\-1-1&1&-2-2\\0-1&0&0-2\end{array}\right] \\=0\\(x-1)(-2) -y(4-4)+(z-2)(1) =0\\-2x+z=0\\2x-z-=0](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx-1%26y%26z-2%5C%5C-1-1%261%26-2-2%5C%5C0-1%260%260-2%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%3D0%5C%5C%28x-1%29%28-2%29%20-y%284-4%29%2B%28z-2%29%281%29%20%3D0%5C%5C-2x%2Bz%3D0%5C%5C2x-z-%3D0)
2x-z=0 is the equation of the plane.
Maybe use a ruler To find the area and add them together to fin the volume.
Repeated measures study is when participants of the first treatment are still the participants of the second treatment either to see the effects of the variable. Thank you for your question. Please don't hesitate to ask in Brainly your queries.
By definition:
- If a system has at least one solution, it's said to be consistent.
- If a system has exactly one solution, it's independent.
- If a system has infinite solutions, it's dependent
- If a system has no solutions, it's inconsistent.
Your system has exactly one solution (the two lines represent the two equations, and the point where they meet is the solution of the system), and so it is consistent, and in particular independent.
Answer:
3×d+5b×3
=3d+15b.
I think it will help you.