3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602495420647428097356258070669831069799352606933921356858813912148073547284632277849080870024677763036055512323866562951788537196730346347012229395816067925091532174890308408865160611190114984434123501246469280288059961342835118847154497712784733617662850621697787177438243625657117794500644777183702219991066950216567576440449979407650379999548450027106659878136038023141268369057831904607927652972776940436130230517870805082942280202329012216301023097721515694464279098021908266898688342630716092079140851976952355534886577434252775311972474308730436195113961190800302558783876442060850447306312992778889427291897271698905759252446796601897074829609491906487646937027507738664323919190422542902353189233772931667360869962280325571853089192844038050710300647768478632431910002239297852553723755662136447400967605394398382357646069924652600890906241059042154539279044115295803453345002562441010063595300395988644661695956263518780606885137234627079973272331346939714562855426154676506324656766202792452085813477176085216913409465203076733918411475041401689241213198268815686645614853802875393311602322925556189410429953356400957864953409351152664540244187759493169305604486864208627572011723195264050230997745676478384889734643172159806267876718380052476968840849891850861490034324034767426862459523958903585821350064509981782446360873177543788596776729195261112138591947254514003011805034378752776644027626189410175768726804281766238606804778852428874302591452470739505465251353394595987896197789110418902929438185672050709646062635417329446495766126519534957018600154126239622864138977967333290705673769621564981845068422636903678495559700260798679962610190393312637685569687670292953711625280055431007864087289392257145124811357786276649024251619902774710903359333093049483805978566288447874414698414990671237647895822632949046798120899848571635710878311918486302545016209298058292083348136384054217200561219893536693713367333924644161252231969434712064173754912163570085736943973059797097197266666422674311177621764030686813103518991122713397240368870009968629225464650063852886203938005047782769128356033725482557939129852515068299691077542576474883253414121328006267170940090982235296579579978030182824284902214707481111240186076134151503875698309186527806588966823625239378452726345304204188025084423631903833183845505223679923577529291069250432614469501098610888999146585518818735825281643025209392852580779697376208456374821144339881627100317031513344023095263519295886806908213558536801610002137408511544849126858412686958991741491338205784928006982551957402018181056412972508360703568510553317878408290000415525118657794539633175385320921497205266078312602819611648580986845875251299974040927976831766399146553861089375879522149717317281315179329044311218158710235187407572221... and so on
Straight lines will always add up to 180 degrees, so the angle that is missing here is supplementary to the other angle(adds up with the other angle to get 180) so we take 79 away from 180 and get 101 degrees
In order to know the equivalent expression of the given above, all we need to do is to simplify it. So, for the exponents, what we need to do is just subtract. The final answer would be 3/2xy^3. So the answer is option C. Hope this is the answer that you are looking for.