1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aneli [31]
3 years ago
14

A gym employee is paid monthly. After working for three months, he had earned $4,500. To

Mathematics
1 answer:
Leto [7]3 years ago
5 0

Answer:

$9000

Step-by-step explanation:

A gym employee has earned in 3 months =$4500

Then his monthly salary =$4500/3 =$1500

After six months he will earn = 6 × his monthly salary

= 6×$1500=$9000

You might be interested in
Find each unit rate. Round to the nearest hundredth if necessary.
Vladimir79 [104]

Answer:

A. 50 B. 27.5

Step-by-step explanation:

8 0
3 years ago
Your current job offers a pension that is calculated by multiplying the
kirza4 [7]
$266,260 would be by adding all three year salaries together . Now let’s divide that number by 3 to get an average 88753.33 now timed by 1.26% =$1118.29
The answer is $1118.29
3 0
3 years ago
Which of the following is equivalent to tan 5pie/6?<br>​
nataly862011 [7]

Answer: should be -1/ sqrt of 3. If it asks to rationalize it could be -sqrt of 3/3

Step-by-step explanation:

5 0
3 years ago
linda is building a rectangular playhouse. the width is x feet. the length is x + 3 the distance around the base of the playhous
Zanzabum
No. The value of x is 7.5 feet.
7 0
3 years ago
Please help!!<br> Write a matrix representing the system of equations
frozen [14]

Answer:

(4, -1, 3)

Step-by-step explanation:

We have the system of equations:

\left\{        \begin{array}{ll}            x+2y+z =5 \\    2x-y+2z=15\\3x+y-z=8        \end{array}    \right.

We can convert this to a matrix. In order to convert a triple system of equations to matrix, we can use the following format:

\begin{bmatrix}x_1& y_1& z_1&c_1\\x_2 & y_2 & z_2&c_2\\x_3&y_2&z_3&c_3 \end{bmatrix}

Importantly, make sure the coefficients of each variable align vertically, and that each equation aligns horizontally.

In order to solve this matrix and the system, we will have to convert this to the reduced row-echelon form, namely:

\begin{bmatrix}1 & 0& 0&x\\0 & 1 & 0&y\\0&0&1&z \end{bmatrix}

Where the (x, y, z) is our solution set.

Reducing:

With our system, we will have the following matrix:

\begin{bmatrix}1 & 2& 1&5\\2 & -1 & 2&15\\3&1&-1&8 \end{bmatrix}

What we should begin by doing is too see how we can change each row to the reduced-form.

Notice that R₁ and R₂ are rather similar. In fact, we can cancel out the 1s in R₂. To do so, we can add R₂ to -2(R₁). This gives us:

\begin{bmatrix}1 & 2& 1&5\\2+(-2) & -1+(-4) & 2+(-2)&15+(-10) \\3&1&-1&8 \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\0 & -5 & 0&5 \\3&1&-1&8 \end{bmatrix}

Now, we can multiply R₂ by -1/5. This yields:

\begin{bmatrix}1 & 2& 1&5\\ -\frac{1}{5}(0) & -\frac{1}{5}(-5) & -\frac{1}{5}(0)& -\frac{1}{5}(5) \\3&1&-1&8 \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\3&1&-1&8 \end{bmatrix}

From here, we can eliminate the 3 in R₃ by adding it to -3(R₁). This yields:

\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\3+(-3)&1+(-6)&-1+(-3)&8+(-15) \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\0&-5&-4&-7 \end{bmatrix}

We can eliminate the -5 in R₃ by adding 5(R₂). This yields:

\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\0+(0)&-5+(5)&-4+(0)&-7+(-5) \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\0&0&-4&-12 \end{bmatrix}

We can now reduce R₃ by multiply it by -1/4:

\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\ -\frac{1}{4}(0)&-\frac{1}{4}(0)&-\frac{1}{4}(-4)&-\frac{1}{4}(-12) \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}

Finally, we just have to reduce R₁. Let's eliminate the 2 first. We can do that by adding -2(R₂). So:

\begin{bmatrix}1+(0) & 2+(-2)& 1+(0)&5+(-(-2))\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 0& 1&7\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}

And finally, we can eliminate the second 1 by adding -(R₃):

\begin{bmatrix}1 +(0)& 0+(0)& 1+(-1)&7+(-3)\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 0& 0&4\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}

Therefore, our solution set is (4, -1, 3)

And we're done!

3 0
3 years ago
Other questions:
  • How many significant figures does the number 546.000 have
    10·1 answer
  • HELP PLEASE FAST
    6·1 answer
  • Find the sum and express it in simplest form?<br> (-b-c+8)+(7b-7c-9)
    12·1 answer
  • Translation rule (x+4)(y,1)<br> with triangle
    6·1 answer
  • Can someone please help me with this question
    13·2 answers
  • Trigonometry please help!
    14·1 answer
  • Help Me in this math question ASAP​
    8·1 answer
  • Find the Roots of the following polynomial. <br><br> x3−5x2+6x = 0
    5·2 answers
  • X ^ 2 − 17x − 60
    11·1 answer
  • Whats the answer pls i need help
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!