Answer:
a)Null hypothesis:- H₀: μ> 500
Alternative hypothesis:-H₁ : μ< 500
b) (5211.05 , 5411.7)
95% lower confidence bound on the mean.
c) The test of hypothesis t = 5.826 >1.761 From 't' distribution table at 14 degrees of freedom at 95% level of significance.
Step-by-step explanation:
<u>Step :-1</u>
Given a random sample of 15 devices is selected in the laboratory.
size of the small sample 'n' = 15
An average life of 5311.4 hours and a sample standard deviation of 220.7 hours.
Average of sample mean (x⁻) = 5311.4 hours
sample standard deviation (S) = 220.7 hours.
<u>Step :- 2</u>
<u>a) Null hypothesis</u>:- H₀: μ> 500
<u>Alternative hypothesis</u>:-H₁ : μ< 500
<u>Level of significance</u> :- α = 0.95 or 0.05
b) The test statistic
![t = \frac{x^{-} - mean}{\frac{S}{\sqrt{n-1} } }](https://tex.z-dn.net/?f=t%20%3D%20%5Cfrac%7Bx%5E%7B-%7D%20-%20mean%7D%7B%5Cfrac%7BS%7D%7B%5Csqrt%7Bn-1%7D%20%7D%20%7D)
![t = \frac{5311.4 - 500}{\frac{220.7}{\sqrt{15-1} } }](https://tex.z-dn.net/?f=t%20%3D%20%5Cfrac%7B5311.4%20-%20500%7D%7B%5Cfrac%7B220.7%7D%7B%5Csqrt%7B15-1%7D%20%7D%20%7D)
t = 5.826
The degrees of freedom γ= n-1 = 15-1 =14
tabulated value t =1.761 From 't' distribution table at 14 degrees of freedom at 95% level of significance.
calculated value t = 5.826 >1.761 From 't' distribution table at 14 degrees of freedom at 95% level of significance.
Null hypothesis is rejected at 95% confidence on the mean.
C) <u>The 95% of confidence limits </u>
![(x^{-} - t_{0.05} \frac{S}{\sqrt{n} } ,x^{-} + t_{0.05}\frac{S}{\sqrt{n} } )](https://tex.z-dn.net/?f=%28x%5E%7B-%7D%20-%20t_%7B0.05%7D%20%5Cfrac%7BS%7D%7B%5Csqrt%7Bn%7D%20%7D%20%2Cx%5E%7B-%7D%20%2B%20t_%7B0.05%7D%5Cfrac%7BS%7D%7B%5Csqrt%7Bn%7D%20%7D%20%29)
substitute values and simplification , we get
![(5311.4 - 1.761 \frac{220.7}{\sqrt{15} } ,5311.4 +1.761\frac{220.7}{\sqrt{15} } )](https://tex.z-dn.net/?f=%285311.4%20-%201.761%20%5Cfrac%7B220.7%7D%7B%5Csqrt%7B15%7D%20%7D%20%2C5311.4%20%2B1.761%5Cfrac%7B220.7%7D%7B%5Csqrt%7B15%7D%20%7D%20%29)
(5211.05 , 5411.7)
95% lower confidence bound on the mean.