Answer:
x = 8
y = -7
Step-by-step explanation:
3y - 5x = -61
-----------------------+
-9x = -72
x = 8
3y -5(8) = -61
3y - 40 = -61
3y = -21
y = -7
9514 1404 393
Answer:
- adult: 325
- children's: 225
Step-by-step explanation:
It usually works well to let a variable represent the higher-value item in the mix. Here, we can let 'a' represent the number of adult tickets sold. Then the total revenue is ...
1.50a +1.00(550 -a) = 712.50
0.50a = 162.50 . . . . . . . . . . . . . subtract 550 and collect terms
a = 325
c = 550 -325 = 225
325 adult and 225 children's tickets were sold.
Step-by-step explanation:
1 Remove parentheses.
8{y}^{2}\times -3{x}^{2}{y}^{2}\times \frac{2}{3}x{y}^{4}
8y
2
×−3x
2
y
2
×
3
2
xy
4
2 Use this rule: \frac{a}{b} \times \frac{c}{d}=\frac{ac}{bd}
b
a
×
d
c
=
bd
ac
.
\frac{8{y}^{2}\times -3{x}^{2}{y}^{2}\times 2x{y}^{4}}{3}
3
8y
2
×−3x
2
y
2
×2xy
4
3 Take out the constants.
\frac{(8\times -3\times 2){y}^{2}{y}^{2}{y}^{4}{x}^{2}x}{3}
3
(8×−3×2)y
2
y
2
y
4
x
2
x
4 Simplify 8\times -38×−3 to -24−24.
\frac{(-24\times 2){y}^{2}{y}^{2}{y}^{4}{x}^{2}x}{3}
3
(−24×2)y
2
y
2
y
4
x
2
x
5 Simplify -24\times 2−24×2 to -48−48.
\frac{-48{y}^{2}{y}^{2}{y}^{4}{x}^{2}x}{3}
3
−48y
2
y
2
y
4
x
2
x
6 Use Product Rule: {x}^{a}{x}^{b}={x}^{a+b}x
a
x
b
=x
a+b
.
\frac{-48{y}^{2+2+4}{x}^{2+1}}{3}
3
−48y
2+2+4
x
2+1
7 Simplify 2+22+2 to 44.
\frac{-48{y}^{4+4}{x}^{2+1}}{3}
3
−48y
4+4
x
2+1
8 Simplify 4+44+4 to 88.
\frac{-48{y}^{8}{x}^{2+1}}{3}
3
−48y
8
x
2+1
9 Simplify 2+12+1 to 33.
\frac{-48{y}^{8}{x}^{3}}{3}
3
−48y
8
x
3
10 Move the negative sign to the left.
-\frac{48{y}^{8}{x}^{3}}{3}
−
3
48y
8
x
3
11 Simplify \frac{48{y}^{8}{x}^{3}}{3}
3
48y
8
x
3
to 16{y}^{8}{x}^{3}16y
8
x
3
.
-16{y}^{8}{x}^{3}
−16y
8
x
3
Done
Answer:
C
Step-by-step explanation:
Translate the image 2 units right and 1 unit up. Then rotate the image 180°.
Take the coordinate W, it is at (2, 4).
Translate 2 units right (add 2 to the x coordinate) and 1 up (add 1 to the y coordinate)
(2, 4) ------> (2 + 2, 4 + 1) -------> (4, 5)
A rotation of 180° (doesn't matter the direction) makes the coordinates their opposites. Positives become negatives and negatives become positive.
(4, 5) -------> (-4, -5)