Answer:
3000 cm^3.
Step-by-step explanation:
If the top number is 15 it's
15 * 20 * 10
= 3000 cm^3.
Answer:
Natural numbers (integers greater than zero)
X = 3, 5, 4, 4, 3
Step-by-step explanation:
The least number of cars that can be observed in this experiment is 1, if the first car turns left. On the other hand, the experiment could go on forever if no car ever turns left, thus the highest number of cars approaches infinite.
The possible values of X are integers greater than zero, which are known as the Natural numbers.
If X = number of cars observed, simply count the number of letters in each outcome for the value of X:
Outcome = RRL, AARRL, AARL, RRAL, ARL
X = 3, 5, 4, 4, 3
Answer:
74.86% probability that a component is at least 12 centimeters long.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

Variance is 9.
The standard deviation is the square root of the variance.
So

Calculate the probability that a component is at least 12 centimeters long.
This is 1 subtracted by the pvalue of Z when X = 12. So



has a pvalue of 0.2514.
1-0.2514 = 0.7486
74.86% probability that a component is at least 12 centimeters long.
Answer:
2
Step-by-step explanation:
We can set up equation for this one.
Let's say the number is X.
the sum of X and 14 can be expressed as : X+14
five times the sum of X and 14 can be expressed as 5(x+14)
and 5(X+14) = 80

The number is 2