1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
balandron [24]
4 years ago
9

Help...I not understand

Mathematics
1 answer:
natali 33 [55]4 years ago
6 0
2a + 2b = The perimeter. You know one side (5cm) and the total perimeter (30cm)So your equation should be 2(5) + 2(b) = 30. From here you simply solve for "b"   2(b) = 30 -10     2(b) = 20     b = 20/2    b is equal to 10cm. 


You might be interested in
If a triangle has side lengths of 14 centimeters and 18 centimeters and the perimeter is 49 centimeters, how long is the third s
trasher [3.6K]

Answer: 17 centimeters

Step-by-step explanation:

The perimeter of a triangle is all 3 sides added up

x+y+z=p

Substitute 14 in for x, 18 in for y and 49 in for p

14+18+z=49

Add on the left side

32+z=49

Subtract 32 on both sides

z=17

So, the third side is 17 centimeters

Hope this helps! :)

3 0
3 years ago
If cos() = − 2 3 and is in Quadrant III, find tan() cot() + csc(). Incorrect: Your answer is incorrect.
nydimaria [60]

Answer:

\tan(\theta) \cdot \cot(\theta) + \csc(\theta) = \frac{5 - 3\sqrt 5}{5}

Step-by-step explanation:

Given

\cos(\theta) = -\frac{2}{3}

\theta \to Quadrant III

Required

Determine \tan(\theta) \cdot \cot(\theta) + \csc(\theta)

We have:

\cos(\theta) = -\frac{2}{3}

We know that:

\sin^2(\theta) + \cos^2(\theta) = 1

This gives:

\sin^2(\theta) + (-\frac{2}{3})^2 = 1

\sin^2(\theta) + (\frac{4}{9}) = 1

Collect like terms

\sin^2(\theta)  = 1 - \frac{4}{9}

Take LCM and solve

\sin^2(\theta)  = \frac{9 -4}{9}

\sin^2(\theta)  = \frac{5}{9}

Take the square roots of both sides

\sin(\theta)  = \±\frac{\sqrt 5}{3}

Sin is negative in quadrant III. So:

\sin(\theta)  = -\frac{\sqrt 5}{3}

Calculate \csc(\theta)

\csc(\theta) = \frac{1}{\sin(\theta)}

We have: \sin(\theta)  = -\frac{\sqrt 5}{3}

So:

\csc(\theta) = \frac{1}{-\frac{\sqrt 5}{3}}

\csc(\theta) = \frac{-3}{\sqrt 5}

Rationalize

\csc(\theta) = \frac{-3}{\sqrt 5}*\frac{\sqrt 5}{\sqrt 5}

\csc(\theta) = \frac{-3\sqrt 5}{5}

So, we have:

\tan(\theta) \cdot \cot(\theta) + \csc(\theta)

\tan(\theta) \cdot \cot(\theta) + \csc(\theta) = \tan(\theta) \cdot \frac{1}{\tan(\theta)} + \csc(\theta)

\tan(\theta) \cdot \cot(\theta) + \csc(\theta) = 1 + \csc(\theta)

Substitute: \csc(\theta) = \frac{-3\sqrt 5}{5}

\tan(\theta) \cdot \cot(\theta) + \csc(\theta) = 1 -\frac{3\sqrt 5}{5}

Take LCM

\tan(\theta) \cdot \cot(\theta) + \csc(\theta) = \frac{5 - 3\sqrt 5}{5}

6 0
3 years ago
Please help me I need this in like 10min
Gre4nikov [31]

Answer:

1. congreunt; reflection

2. not congruent

3. congruent; rotation & translation

4. 64 cm

5. 62 degrees

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Solve correctly and I’ll give brainliest.
Lera25 [3.4K]

Answer:

7

Step-by-step explanation:

-2 x 6 = -12

-6/1 ÷ -3/1 = 2

-12 - 2 = -14

-14 ÷ -2 = 7

7 0
3 years ago
11×12=(10+1)×(10+2)what property dose this demonstrate
Natasha2012 [34]
This demonstrates the associative property
4 0
4 years ago
Read 2 more answers
Other questions:
  • You too personal reasoning to find 65% of 200
    6·2 answers
  • Which solutions is the correct one?
    11·2 answers
  • How many permutations are there for the letters in the world successes?
    7·1 answer
  • WILL MARK YOU BRAINLIEST!!!! Show your work plzz
    13·2 answers
  • Write a problem that uses a fraction greater than 1
    15·2 answers
  • Please help me :((( it’s geometry
    7·1 answer
  • Similar triangles and polygons worksheet<br> help with number 1
    10·1 answer
  • Which graph matches the equation y+6=&gt;«x + 4)?
    14·1 answer
  • Is 6.2 a rational number or no
    12·2 answers
  • Hello please help me on #5 <br> I’m not sure what I did wrong
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!