Answer:
f(x) = 2x + 4 domains {-1, 0, 1}
range {2, 4, 6}
(please mark brain if this helps and is correct)
Step-by-step explanation:
to solve f(x) to find the range you would want to input all the domain numbers in the equation f(x) to get the range of all the numbers you need
step 1: take the first domain number and input it into your equation where x is
ex: 2x + 4 [2(-1) + 4] = -2 + 4 = 2
step 2: add the second domain number and input it into your equation where x is
ex: 2x + 4 [2(0) + 4] = 0 + 4 = 4
step 3: add the last domain number and input it into your equation where x is
ex: 2x + 4 [2(1) + 4] = 2 + 4 = 6
Now we have determined what the range is
Answer: a) √50
b) n = 1 + 7i
Step-by-step explanation:
first, the modulus of a complex number z = a + bi is
IzI = √(a^2 + b^2)
The fact that n is complex does not mean that n doesn't has a real part, so we must write our numbers as:
m = 2 + 6i
n = a + bi
Im + nI = 3√10
Im + n I = √(a^2 + b^2 + 2^2 + 6^2)= 3√10
= √(a^2 + b^2 + 40) = 3√10
a^2 + b^2 + 40 = 3^2*10 = 9*10 = 90
a^2 + b^2 = 90 - 40 = 50
√(a^2 + b^2 ) = InI = √50
The modulus of n must be equal to the square root of 50.
now we can find any values a and b such a^2 + b^2 = 50.
for example, a = 1 and b = 7
1^2 + 7^2 = 1 + 49 = 50
Then a possible value for n is:
n = 1 + 7i
590 is your answer mark me brainist please
Answer:
nol and klj
Step-by-step explanation:
since they are parallel lines you would look for which angles correspond to the sample place on the intersection
Answer:
Step-by-step explanation:
I'm going to assume you meant 2x²-3x-5