The sum of the first 20 terms of an arithmetic sequence with the 18th term of 8.1 and a common difference of 0.25 is 124.5
Given,
18th term of an arithmetic sequence = 8.1
Common difference = d = 0.25.
<h3>What is an arithmetic sequence?</h3>
The sequence in which the difference between the consecutive term is constant.
The nth term is denoted by:
a_n = a + ( n - 1 ) d
The sum of an arithmetic sequence:
S_n = n/2 [ 2a + ( n - 1 ) d ]
Find the 18th term of the sequence.
18th term = 8.1
d = 0.25
8.1 = a + ( 18 - 1 ) 0.25
8.1 = a + 17 x 0.25
8.1 = a + 4.25
a = 8.1 - 4.25
a = 3.85
Find the sum of 20 terms.
S_20 = 20 / 2 [ 2 x 3.85 + ( 20 - 1 ) 0.25 ]
= 10 [ 7.7 + 19 x 0.25 ]
= 10 [ 7.7 + 4.75 ]
= 10 x 12.45
= 124.5
Thus the sum of the first 20 terms of an arithmetic sequence with the 18th term of 8.1 and a common difference of 0.25 is 124.5
Learn more about arithmetic sequence here:
brainly.com/question/25749583
#SPJ1
45 / 3 = 15
45 - 15 = 30
30 / 5 = 6
6 x 2 = 12
30 - 12 = 18
The answer is D:18
Step-by-step explanation:
x = by - 3/2
x + 3/2 = by
y = x/b + 3/(2b)
now compare this to the first equation :
y = 2x + 3
the system has infinite solutions, if both equations are actually identical.
and they are only identical, if b = 1/2
y = x/(1/2) + 3/(2 × 1/2) = 2x + 3