Determine the largest interval (a,b) for which Theorem 1 guarantees the existence of a unique solution on (a,b) to the initial
value problem below. xy triple prime minus 7 y prime plus e Superscript x Baseline yxy′′′−7y′+exyequals=x cubed minus 8x3−8, y(77)equals=1, y primey′(77)equals=0, y double primey′′(77)equals=2 nothing