Answer:
The equation is:
f (t) = 4 + 5 (1 - cos (2pi t / 2))
Step-by-step explanation:
with the previous exercise we look for the equation for h = f (t)
So the data we have are
Wheel diameter = 10m (wheel radius = 5m)
1 wheel gets 1 revolution in 2 minutes.
the beginning of a entry will be related to that f (0) = 4
our wish is that f (z) get at least 4 with an amplitude of 5 (this value determines the radius of the wheel) for 2 minutes
with this the particle f (t) is transformed into
f (t) = 4 + 5 (1 - cos (2pi t / 2))
We know that the maximum value of cos in t will be 0, 1 -cos has minutes, the result will be as follows:
f (t) = 4 + 5 (1 - cos (2pi t / 2))
5+(x-5)=x
Simplify the left side by combining like terms:
5 + x - 5 = x
5-5 = 0
x = x
X = All real numbers.
Hello here is a solution :
560+ 147= 707
14(40)= 560
14+ 14(1/2)=21
21(7)= 147
The measure of ∠BAF is 54°.
Solution:
DF and CE are intersecting lines.
m∠EAF = 72° and AB bisects ∠CAF.
∠EAF and ∠DAC are vertically opposite angles.
Vertical angle theorem:
<em>If two lines are intersecting, then vertically opposite angles are congruent.</em>
∠DAC ≅ ∠EAF
m∠DAC = 72°
<em>Sum of the adjacent angles in a straight line = 180°</em>
m∠DAE + m∠EAF = 180°
m∠DAE + 72° = 180°
Subtract 72° from both sides.
m∠DAE = 108°
∠CAF and ∠DAE are vertically opposite angles.
⇒ m∠CAF = m∠DAE
⇒ m∠CAF = 108°
AB bisects ∠CAF means ∠CAB = ∠BAF
m∠CAB + m∠BAF = 108°
m∠BAF + m∠BAF = 108°
2 m∠BAF = 108°
Divide by 2 on both sides, we get
m∠BAF = 54°
Hence the measure of ∠BAF is 54°.