1. Contraction
2. Actin
3. Tendons
4. Epidermis
5. Dermis
6. Acne
7. A nerve signal from the brain arrives at the intersection of the nerve and muscle cells and releases acetylcholine from the neuron. This triggers chemical changes in the muscle cell involving ions, including Ca2+. Calcium triggers the thick filaments, made of myosin, to attach to the thin filaments, made of actin, in the muscle cell, and the myosin pulls the actin toward the center of the muscle cell. ATP causes the release of the actin fibers, allowing the muscle to relax and the process to begin again.
For Penn Foster.
Answer: exotic
Explanation: exotic can be thought of as “not from here”
Answer:
d.0.48
Explanation:
When a population is in Hardy Weinberg equilibrium the <u>genotypic </u>frequencies are:
freq (AA) = p²
freq (Aa) = 2pq
freq (aa) = q²
<em>p</em> is the frequency of the dominant <em>A</em> allele and <em>q</em> is the frequency of the recessive <em>a</em> allele.
In this population of 100 individuals, 84 martians have the dominant phenotype and 16 have the recessive phenotype.
Therefore:
q²=16/100
q² = 0.16
q=√0.16
q = 0.4
And p+q=1, so:
p = 1 - q
p = 1-0.4
p = 0.6
The frequency of heterozygotes is:
freq (Aa) = 2pq = 2 × 0.4 × 0.6
freq (Aa) = 0.48
The answer is language. Humans have a high degree of language acquisition and complexity compared to
chimpanzees due to foxp2 proteins. Foxp2
are transcription factors that are significant in cell proliferation. The difference of 2 in 700 amino acids in the sequence makes the protein to be differentially regulated between the two
species.