Answer:
$3
Step-by-step explanation:
the cost of 5 DVDs and a $15
you didn't ask anything
This is a perfect example of exponential decay. In this case the growth factor should be represented by a fraction, and it is! This forest, starting out with apparently ( 800? ) pine trees, has a disease spreading, which kills 1 / 4th of each of the pine trees yearly. Therefore, the pine trees remaining should be 3 / 4.
Respectively 3 / 4 should be the growth factor, starting with 800 pine trees - the start value. This can be represented as such,
- where a = start value, b = growth factor, t = time ( <em>variable quantity</em> )
____
Thus, the function
can model this problem. The forest after t years should have P( t ) number of pine trees remaining.
About 7.07 inches. to get this do 2.25 x 3.14 (pi) to get about 7.07
Answer:
<em>It will take 26.34 minutes for the population to reach 5 times its initial value</em>
Step-by-step explanation:
<u>Exponential Growing</u>
The population of bacteria grows at a rate expressed by the equation:

Where t is in minutes.
We need to know when the population will reach 5 times its initial value. The initial value can be determined by setting t=0:

Now we find the time when the population is 5*256=1,280. The equation to solve is:

Dividing by 256:

Taking natural logarithms:

Applying the logarithm properties:

Solving for t:

It will take 26.34 minutes for the population to reach 5 times its initial value
Answer:
The picture is blocked out D:
Step-by-step explanation: