Answer:
The interval from the sample of size 400 will be approximately <u>One -half as wide</u> as the interval from the sample of size 100
Step-by-step explanation:
From the question we are told the confidence level is 95% , hence the level of significance is
=>
Generally from the normal distribution table the critical value of
is
Generally the 95% confidence interval is dependent on the value of the margin of error at a constant sample mean or sample proportion
Generally the margin of error is mathematically represented as
Here assume that
is constant so

=> 
=> 
So let
and 
=> 
=> 
=> 
So From this we see that the confidence interval for a sample size of 400 will be half that with a sample size of 100





Consider a
ABC right angled at C and
Then,
‣ Base [B] = BC
‣ Perpendicular [P] = AC
‣ Hypotenuse [H] = AB

Let,
Base = 7k and Perpendicular = 8k, where k is any positive integer
In
ABC, H² = B² + P² by Pythagoras theorem






Calculating Sin




Calculating Cos




<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

Putting,
• Sin
= 
• Cos
= 

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>










✧ Basic Formulas of Trigonometry is given by :-


✧ Figure in attachment

<em>5</em><em>X</em><em>+</em><em>1</em><em>3</em><em>+</em><em>X</em><em>+</em><em>5</em><em>=</em><em>9</em><em>0</em><em>°</em><em>(</em><em>SUM</em><em> </em><em>OF</em><em> </em><em>COMPLEMENTRY</em><em> </em><em>ANGLE</em><em> </em><em>IS</em><em> </em><em>EQUAL</em><em> </em><em>TO</em><em> </em><em>9</em><em>0</em><em>°</em><em>)</em>
<em>6</em><em>+</em><em>1</em><em>8</em><em>=</em><em>9</em><em>0</em><em>°</em>
<em>6</em><em>X</em><em>=</em><em>9</em><em>0</em><em>°</em><em>-</em><em>1</em><em>8</em><em>°</em>
<em>X</em><em>=</em><em>7</em><em>2</em><em>°</em><em>/</em><em>6</em>
<em>X</em><em>=</em><em>1</em><em>2</em><em> </em><em>°</em><em>ANSWER</em>