1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dennis_Churaev [7]
3 years ago
7

Y=-1/5x+12 What is the y-intercept? What is the slope?

Mathematics
2 answers:
kirill115 [55]3 years ago
6 0

Answer:

The slope is -1/5 and the y intercept is 12

Step-by-step explanation:

Y=-1/5x+12

This is in the form

y=mx+b where m is the slope and b is the y intercept

The slope is -1/5 and the y intercept is 12

Nikolay [14]3 years ago
4 0

Answer:

-1/5 = slope

12 = y-intercept

Step-by-step explanation:

y = mx + b

m is always equal to the slope

b is equal to the y-intercept

which makes -1/5 the slope

and makes 12 the y-intercept

You might be interested in
A 95% confidence interval for a population mean is computed from a sample of size 400. Another 95% confidence interval will be c
Anna [14]

Answer:

The interval from the sample of size 400 will be approximately <u>One -half as wide</u> as the interval from the sample of size 100

Step-by-step explanation:

From the question we are told the confidence level is  95% , hence the level of significance is    

      \alpha = (100 - 95 ) \%

=>   \alpha = 0.05

Generally from the normal distribution table the critical value  of  \frac{\alpha }{2} is  

   Z_{\frac{\alpha }{2} } =  1.96

Generally the 95% confidence interval is dependent on the value of the margin of error at a constant sample mean or sample proportion

Generally the margin of error is mathematically represented as

      E = Z_{\frac{\alpha }{2} } * \frac{\sigma}{\sqrt{n} }    

Here assume that Z_{\frac{\alpha }{2} } \ and \  \sigma \ is constant so

     E =  \frac{k}{\sqrt{n} }

=>  E \sqrt{n} = K

=>   E_1 \sqrt{n}_1 =  E_2 \sqrt{n}_2

So  let  n_1 = 400 and n_2 =  100

=>   E_1 \sqrt{400} =  E_2 \sqrt{100}

=>  E_1 =  \frac{\sqrt{100} }{\sqrt{400} } E_2

=>  E_1 =  \frac{1}{2 } E_2

So From this we see that  the confidence interval for a sample size of 400 will be half that with a sample size of 100

   

     

   

7 0
3 years ago
Help please<br> I will give brainliest
Mashutka [201]
  • tan (<Q)=11/8
  • m(<Q)=tan^-1(11/8)=53.96°
  • tan(<P)=8/11
  • m(<P)=tan^-1(8/11)=36.02°
  • QP=Square root of (8)^2+(11)^2=square root 185
  • the answer of the second question is 53°

8 0
3 years ago
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
If two angles are ​complementary ​angles and they measure m​ ∠1=(x + 5)​ and ​m∠2=(5x + 13)​. Find x and the measure for both an
Korolek [52]

<em>5</em><em>X</em><em>+</em><em>1</em><em>3</em><em>+</em><em>X</em><em>+</em><em>5</em><em>=</em><em>9</em><em>0</em><em>°</em><em>(</em><em>SUM</em><em> </em><em>OF</em><em> </em><em>COMPLEMENTRY</em><em> </em><em>ANGLE</em><em> </em><em>IS</em><em> </em><em>EQUAL</em><em> </em><em>TO</em><em> </em><em>9</em><em>0</em><em>°</em><em>)</em>

<em>6</em><em>+</em><em>1</em><em>8</em><em>=</em><em>9</em><em>0</em><em>°</em>

<em>6</em><em>X</em><em>=</em><em>9</em><em>0</em><em>°</em><em>-</em><em>1</em><em>8</em><em>°</em>

<em>X</em><em>=</em><em>7</em><em>2</em><em>°</em><em>/</em><em>6</em>

<em>X</em><em>=</em><em>1</em><em>2</em><em> </em><em>°</em><em>ANSWER</em>

6 0
3 years ago
Solve each equation.Show your work.<br>Can someone help me please??​
Inga [223]

Answer:

1/2a = -5

a = (-5 x 2) : 1

a = -10

8 - b = 9,5

b = 8 - 9,5

b = -1,25

0,1 = -10c

c = 0,1 : -10

c = -0,01

I hope it's helpful.

3 0
3 years ago
Other questions:
  • #3 please im so bad with area lol
    13·2 answers
  • Farimah and Helio are standing 15 ft. apart from each other and looking up at a kite that is with the flying between them. Farim
    9·1 answer
  • Please help. what is the quotient of 4m^12/x-1÷x^2/8m^3 assume x ≠ 0 and m≠0
    10·1 answer
  • A weather station on the top of a mountain reports that the temperature is currently 0 ∘ C and has been falling at a constant ra
    8·1 answer
  • What is 7/8 minus 6 3/4
    13·2 answers
  • Maria and John love their skateboards. One day they were on
    15·2 answers
  • Tickets to the concert were $2.50 for adults and $1 for students. $1200 was collected and 750 tickets were sold. Write a system
    10·2 answers
  • Write the slope-intercept form of the line that goes through the points (-6,-4) and (-4, -3).
    10·2 answers
  • Which ordered pair can be removed so that the resulting graph represents a function?
    12·1 answer
  • Which expression matches this algebraic expression after using Distributive
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!