Srry but I can’t figure this one out
Answer:
24
Step-by-step explanation:
The question is saying, how many three digit numbers can be made from the digits 3, 4, 6, and 7 but there can't be two of the same digit in them. For example 346 fits the requirements, but 776 doesn't, because it has two 7s.
Okay, on to the problem:
We can do one digit at a time.
First digit:
There are 4 digits that we can choose from. (3, 4, 6, and 7)
Second digit:
No matter which digit we chose for the first digit, there is only going to be 3 of them left, because we already chose one, and you can't repeat that same digit. So there are 3 options.
Third digit:
Using the same logic, there are only 2 options left.
We have 4 choices for the first digit, 3 choices for the second, and 2 for the third.
Hence, this is 4 * 3 * 2 = 24 three-digit numbers that can be made.
Answer:
5 degree Fahrenheit.
Step-by-step explanation:
The solution of the following problem is 5 degree Fahrenheit, since it is referring to the equation <em>0+5.</em>
I hope this helped!!
~ Penny
Answer:
Check the solution below
Step-by-step explanation:
2) Given the equation
x +y =5... 1 and
x-y =3 ... 2
Add both equations
x+x = 5+3
2x = 8
x = 8/2
x = 4
Substitute x = 4 into 1:
From 1: x+y = 5
4+y= 5
y = 5-4
y = 1
3) Given
x+3y =15 ... 1
2x+7y=19 .... 2
From 2: x = 15-3y
Substitute into 2
2(15-3y)+7y = 19
30-6y+7y = 19
30+y = 19
y = 19-30
y = -11
Substitute y=-11 into x = 15-3y
x =15-3(-11)
x = 15+33
x = 48
The solution set is (48, -11)
4) given
x/2 +y/3 =0 and x+2y=1
From 1
(3x+2y)/6 = 0
3x+2y = 0.. 3
x+2y= 1... 4
From 4: x = 1-2y
Substutute
3(1-2y) +2y = 0
3-6y+2y = 0
3 -4y = 0
4y = 3
y = 3/4
Since x = 1-2y
x = 1-2(3/4)
x = 1-3/2
x= -1/2
The solution set is (-1/2, 3/4)
5) Given
5.x=1/2 and y =x +1 then solution is
We already know the vkue of x
Get y
y= x+1
y = 1/2 + 1
y = 3/2
Hence the solution set is (1/2, 3/2)
6) Given
3x +y =5 and x -3y =5
From 3; x = 5+3y
Substitute into 1;
3(5+3y)+y = 5
15+9y+y = 5
10y = 5-15
10y =-10
y = -1
Get x;
x = 5+3y
x = 5+3(-1)
x = 5-3
x = 2
Hence two solution set is (2,-1)
Uhmmmm is there a picture of the problem i’m confused