((1+4i)/i) +(1+i)/(2+5i)
(((1+4i)*(2+5i)) +((1+i)*<span>i))/(i*(2+5i))
</span>((2 + 8i + 5i +20i²) + (1i + i²) )/ (2i + 5i<span>²)
((2 + 13i -20) + (1i -1))/(2i - 5)   where </span>i<span>² = -1</span><span>
((14i - 19) +0)/2i - 5
(14i -19)/(2i - 5)        </span>
        
             
        
        
        
Number 4
6=2•6-6
-18=-2•6-6
        
             
        
        
        
Ok to find dy/dx of x+2y=xy we take derivative of both sides with respect to x
1+2dy/dx = x*dy/dx +y*dx/dx
1+ 2dy/dx = x*dy/dx + y* 1
2dy/dx +1 = x*dy/dx + y
2y’ + 1 = xy’ + y
2y’ + 1 - xy’ = y
2y’ -xy’ = y - 1
y’(2-x) = y - 1
so we get finally 
y’= (y-1)/(2-x) 
Hope this helps you understand the concept! Any questions please ask! Thank you so much!!
        
             
        
        
        
Answer:
1094
Step-by-step explanation:
 
        
             
        
        
        
Answer: y = - 1 
Step-by-step explanation:
- Combine the like terms. -23y - 5 = 18
- Add 5 on both sides. -23y = 23
- Divide -23 on both sides. y = - 1