The type of goal that Ariel will set so that she can be able to works to graduate from high school is one that has to be long term.
<h3>What are personal goals ?</h3>
These kind of goals are known to be things or items that a person is hoping on getting or achieving.
Therefore, the type of goal that Ariel will set so that she can be able to works to graduate from high school is one that has to be long term as it will be one that will last for a very long time.
Learn more about goals from
brainly.com/question/1512442
#SPJ4
Since you are searching for researching information, .edu will be more reliable.
.edu is for education purpose, with credits of scholars.
.com is a general URL, it's not relavant to reliability.
Answer:
Flowchart of an algorithm (Euclid's algorithm) for calculating the greatest common divisor (g.c.d.) of two numbers a and b in locations named A and B. The algorithm proceeds by successive subtractions in two loops: IF the test B ≥ A yields "yes" or "true" (more accurately, the number b in location B is greater than or equal to the number a in location A) THEN, the algorithm specifies B ← B − A (meaning the number b − a replaces the old b). Similarly, IF A > B, THEN A ← A − B. The process terminates when (the contents of) B is 0, yielding the g.c.d. in A. (Algorithm derived from Scott 2009:13; symbols and drawing style from Tausworthe 1977).
Explanation:
Flowchart of an algorithm (Euclid's algorithm) for calculating the greatest common divisor (g.c.d.) of two numbers a and b in locations named A and B. The algorithm proceeds by successive subtractions in two loops: IF the test B ≥ A yields "yes" or "true" (more accurately, the number b in location B is greater than or equal to the number a in location A) THEN, the algorithm specifies B ← B − A (meaning the number b − a replaces the old b). Similarly, IF A > B, THEN A ← A − B. The process terminates when (the contents of) B is 0, yielding the g.c.d. in A. (Algorithm derived from Scott 2009:13; symbols and drawing style from Tausworthe 1977).
Answer:
O(n) which is a linear space complexity
Explanation:
Space complexity is the amount of memory space needed for a program code to be executed and return results. Space complexity depends on the input space and the auxiliary space used by the algorithm.
The list or array is an integer array of 'n' items, with the memory size 4*n, which is the memory size of an integer multiplied by the number of items in the list. The listSize, i, and arithmeticSum are all integers, the memory space is 4(3) = 12. The return statement passes the content of the arithmetic variable to another variable of space 4.
The total space complexity of the algorithm is "4n + 16" which is a linear space complexity.