<u>SOLUTION TO QUESTION 1</u>
For
We add to both sides of the inequality. This gives us
We simplify to obtain;
Hence,
See the attachment for graph.
<u>SOLUTION TO QUESTION 2</u>
For the inequality
We divide both sides by and reverse the inequality sign because, we are dividing by a negative number. This implies that;
We simplify to get,
See attachment for graph
<u>SOLUTION TO QUESTION 3</u>
For
We group the terms in on the left hand side of the inequality,
We simplify to obtain;
We divide both sides by and reverse the inequality sign because, we are dividing by a negative number again. This implies that;
This simplifies to;
See attachment for graph.
<u>SOLUTION TO QUESTION 4</u>
Given the set {5,10,15}
All the possible subsets are;
{}, {5}, {10}, {15}, {5,10}, {5,15}, {10,15}, and {5,10,15}
<u>SOLUTION TO QUESTION 5</u>
For
We divide through the first inequality by 2 and the second inequality by 7 to obtain;
Or
<u>SOLUTION TO QUESTION 6</u>
We have
This implies that;
or
This implies that;
or
This simplifies to;
or
or
<u>SOLUTION TO QUESTION 7</u>
We have
This implies that;
or
We divide the second inequality by negative 1 and reverse the inequality sign.
or
We group like terms to get,
or
or
We divide both inequalities by 2 to obtain;
or
<u>SOLUTION TO QUESTION 8</u>
Given A={1,2,3,4,5,6,7,8,9}
and
B={2.4,6,8}
The union of A and B, are the elements in set A or set B or both.
={1,2,3,4,5,6,7,8,9}
<u>SOLUTION TO QUESTION 9</u>
Given:
P={1,5,7,9,13}
R={1,2,3,4,5,6,7}
and
Q={1,3,5}
We apply our understanding of subsets to draw the Venn diagram.
See attachment for the Venn Diagram.