The height of this triangle would be 10.4
In order to find this, you first must find the length of the sides. Using a manipulated formula for area of an equilateral triangle, we can determine the lengths of the side. Below if the formula.
S = 
In this, S is the length of the side and A is the area. So we plug in and get:
S =
S = 
S = 12
Now that we have the side as 12, we can use the Pythagorean Theorem to find the height. If you split a equilateral triangle down the middle, you are left with two right triangles. Using this right triangle, the hypotenuse would be 12, the first leg would be 6 (half of the base) and the height would be the other leg. So we plug in and solve.




h = 10.4
Answer:
-3 > x > 7
Step-by-step explanation:
Since the domain is the x, there are open circles, and it ends, then x could equal -3 > x > 7
Answer is: a= -4
STEP
1
:
1
Simplify —————
a + 3
Equation at the end of step
1
:
a 3 1
(————————+—————)-——— = 0
((a2)-9) (a-3) a+3
STEP
2
:
3
Simplify —————
a - 3
Equation at the end of step
2
:
a 3 1
(————————+———)-——— = 0
((a2)-9) a-3 a+3
STEP
3
:
a
Simplify ——————
a2 - 9
Equation at the end of step
3
:
a 3 1
(————————————————— + —————) - ————— = 0
(a + 3) • (a - 3) a - 3 a + 3
Equation at the end of step
4
:
(4a + 9) 1
————————————————— - ————— = 0
(a + 3) • (a - 3) a + 3
Pull out like factors :
3a + 12 = 3 • (a + 4)
Equation at the end of step
6
:
3 • (a + 4)
————————————————— = 0
(a + 3) • (a - 3)
3•(a+4)
——————————— • (a+3)•(a-3) = 0 • (a+3)•(a-3)
(a+3)•(a-3)
a+4 = 0
Subtract 4 from both sides of the equation :
a = -4
Answer:
16
Step-by-step explanation:
Answer:
DBA =110 degree
Step-by-step explanation:
angle DBA is central angle
central angle = arc angle = 110 degree