Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
- Terms/Coefficients
- Functions
- Function Notation
- Graphing
- Solving systems of equations
<u>Calculus</u>
Area - Integrals
Integration Rule [Reverse Power Rule]: 
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Addition/Subtraction]: ![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Bf%28x%29%20%5Cpm%20g%28x%29%5D%7D%20%5C%2C%20dx%20%3D%20%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx%20%5Cpm%20%5Cint%20%7Bg%28x%29%7D%20%5C%2C%20dx)
Area of a Region Formula: ![\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cint%5Climits%5Eb_a%20%7B%5Bf%28x%29%20-%20g%28x%29%5D%7D%20%5C%2C%20dx)
Step-by-step explanation:
*Note:
<em>Remember that for the Area of a Region, it is top function minus bottom function.</em>
<u />
<u>Step 1: Define</u>
f(x) = x²
g(x) = x⁶
Bounded (Partitioned) by x-axis
<u>Step 2: Identify Bounds of Integration</u>
<em>Find where the functions intersect (x-values) to determine the bounds of integration.</em>
Simply graph the functions to see where the functions intersect (See Graph Attachment).
Interval: [-1, 1]
Lower bound: -1
Upper Bound: 1
<u>Step 3: Find Area of Region</u>
<em>Integration</em>
- Substitute in variables [Area of a Region Formula]:
![\displaystyle A = \int\limits^1_{-1} {[x^2 - x^6]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cint%5Climits%5E1_%7B-1%7D%20%7B%5Bx%5E2%20-%20x%5E6%5D%7D%20%5C%2C%20dx)
- [Area] Rewrite [Integration Property - Subtraction]:

- [Area] Integrate [Integration Rule - Reverse Power Rule]:

- [Area] Evaluate [Integration Rule - FTC 1]:

- [Area] Subtract:

Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Area Under the Curve - Area of a Region (Integration)
Book: College Calculus 10e
For this case we have the following inequality:
2 ≥ 4 - v
The first thing we must do in this case is to clear the value of v.
We have then:
v ≥ 4 - 2
v ≥ 2
Therefore, the solution set is given by:
[2, inf)
Answer:
See attached image.
Answer:
The measure of one angle of a regular convex 20-gon is 162°
Step-by-step explanation:
* Lets explain how to solve the problem
- A convex polygon is a polygon with all the measures of its interior
angles less than 180°
- In any polygon the number of its angles equal the number of its sides
- A regular polygon is a polygon that is all angles are equal in measure
and all sides are equal in length
- The rule of the measure of an angle of a regular polygon is
, where m is the measure of each interior
angle in the polygon and n is the numbers of the sides or the angles
of the polygon
* Lets solve the problem
- The polygon is convex polygon of 20 sides (20 angles)
- The polygon is regular polygon
∵ The number of the sides of the polygon is 20 sides
∴ n = 20
∵ The polygon is regular
∴ All angles are equal in measures
∵ The measure of each angle is 
∴
∴ 
∴ 
∴ m = 162
∴ The measure of one angle of a regular convex 20-gon is 162°
The value of x is the variable of the number it is closer to
Answer:
Neema should get one box.
Step-by-step explanation:
Neema has 10 friends and each friend wants 2 cookies. 2x10 = 20 cookies, the exact amount that is included in a single box. So Neema only needs to get one box to satisfy everyone.