Answer:
The tail of an ATP molecule is made up by 3 phosphate groups link together by the help of 2 high energy phospho anhydride bonds.
Explanation:
ATP or adenosine tri phosphate is an energy rich compound that contain adenine base, ribose sugar and 3 phosphate groups.
These 3 phosphate groups makes up the tail of ATP molecule.The 3 phosphate groups are designated as alpha phosphate,beta phosphate and gamma phosphate starting from the C5 atom of ribose sugar.
When ATP undergo hydrolysis the terminal phosphate group or the gamma phosphate group is cleaved from the ATP molecule resulting in the formation of ADP and inorganic phosphate along with the generation of high amount of free energy that is utilized by the cell to perform various cellular and physiological activities.
Mostly fungal species are multicellular but yeast is unicellular
An example could be oil (olive, almond)
B. the chromatids are pulled apart
Transport of blood under high pressure is done through the concerted efforts of the heart and arteries.
<h2>The circulatory system is the network of the heart, arteries, veins, and capillaries responsible for the movement of blood around the body.</h2>
Transporting blood under high pressure can be explained in the following steps:
- Contraction of the heart ventricles creates blood under high pressure
- High pressured blood is removed from the heart through the arteries. In addition, the arteries are able to contract and expand, thus are elastic
- The lumen of the arteries is narrow thus helping in maintaining high pressure
As a result of the above, the high pressure of blood is maintained and transported to the extremities of the body.
To learn more about the circulatory system see: brainly.com/question/3305440?referrer=searchResults
SPJ12