Answer:
1. Consistent equations
x + y = 3
x + 2·y = 5
2. Dependent equations
3·x + 2·y = 6
6·x + 4·y = 12
3. Equivalent equations
9·x - 12·y = 6
3·x - 4·y = 2
4. Inconsistent equations
x + 2 = 4 and x + 2 = 6
5. Independent equations
y = -8·x + 4
8·x + 4·y = 0
6. No solution
4 = 2
7. One solution
3·x + 5 = 11
x = 2
Step-by-step explanation:
1. Consistent equations
A consistent equation is one that has a solution, that is there exist a complete set of solution of the unknown values that resolves all the equations in the system.
x + y = 3
x + 2·y = 5
2. Dependent equations
A dependent system of equations consist of the equation of a line presented in two alternate forms, leading to the existence of an infinite number of solutions.
3·x + 2·y = 6
6·x + 4·y = 12
3. Equivalent equations
These are equations with the same roots or solution
e.g. 9·x - 12·y = 6
3·x - 4·y = 2
4. Inconsistent equations
Inconsistent equations are equations that are not solvable based on the provided set of values in the equations
e.g. x + 2 = 4 and x + 2 = 6
5. Independent equations
An independent equation is an equation within a system of equation, that is not derivable based on the other equations
y = -8·x + 4
8·x + 4·y = 0
6. No solution
No solution indicates that the solution is not in existence
Example, 4 = 2
7. One solution
This is an equation that has exactly one solution
Example 3·x + 5 = 11
x = 2
The problem to number 1 is a inequality, so
x-2<-7
x<-5
since it is < it will have open dot.
Answer: C
2. x/3>-3
x>-9
Answer: D
3. 5p+26<72
5p<46
p<9.2
Answer: C
4. -3w+3>=18
-3w>=15
x<=-5
5. 15x-21>= 12x+18
x>=13
Answer A
6: |3x|=15
Absolute values positive so {-5,5}
Answer: B
7: |2x-3|=5
x=4,-1
Answer: C
Answer:
how should I help you with
9514 1404 393
Answer:
- slope: cost per mile
- y-intercept: fixed base cost
Step-by-step explanation:
The y-intercept is the value of y when x=0. The problem statement tells you that x is the number of miles driven, and y is the rental cost.
When the number of miles driven is zero, the rental cost is ...
y = 2.25×0 +70
y = 70
The cost of renting the truck is $70 when it isn't driven anywhere. The y-intercept ($70) is the basic, fixed cost of truck rental.
__
If x=1 (1 mile driven), then 2.25 is added to the cost of the truck rental. The slope (2.25) is the cost per mile driven. (That mileage cost is added to the basic rental cost.)