Answer:
StartFraction 6 Over 5 x Superscript 10 Baseline EndFraction
Step-by-step explanation:
Apparently you want to simplify ...

The applicable rules of exponents are ...
(a^b)(a^c) = a^(b+c)
1/a^b = a^-b
(a^b)^c = a^(bc)
__
So the expression simplifies as ...

1) f(x)=2x
when x=3 then f(x) =3×2=<em><u>6</u></em>
when x=4 then f(x)=4×2=<em><u>8</u></em>
2)At y=35(no. of mangoes),x corresponds to y=60(amount)
so$<em><u>6</u></em><em><u>0</u></em><em><u>,</u></em><em><u> </u></em><em><u>amount</u></em><em><u> </u></em><em><u>he</u></em><em><u> </u></em><em><u>need</u></em><em><u> </u></em><em><u>to</u></em><em><u> </u></em><em><u>spend</u></em><em><u>!</u></em>
3) f(x)= x+2
for x=1, f(x)=1+2=<em><u>3</u></em>
for x=2,f(x)=2+2=<em><u>4</u></em>
✌️:)
Answer:
∫((cos(x)*dx)/(√(1+sin(x)))) = 2√(1 + sin(x)) + c.
Step-by-step explanation:
In order to solve this question, it is important to notice that the derivative of the expression (1 + sin(x)) is present in the numerator, which is cos(x). This means that the question can be solved using the u-substitution method.
Let u = 1 + sin(x).
This means du/dx = cos(x). This implies dx = du/cos(x).
Substitute u = 1 + sin(x) and dx = du/cos(x) in the integral.
∫((cos(x)*dx)/(√(1+sin(x)))) = ∫((cos(x)*du)/(cos(x)*√(u))) = ∫((du)/(√(u)))
= ∫(u^(-1/2) * du). Integrating:
(u^(-1/2+1))/(-1/2+1) + c = (u^(1/2))/(1/2) + c = 2u^(1/2) + c = 2√u + c.
Put u = 1 + sin(x). Therefore, 2√(1 + sin(x)) + c. Therefore:
∫((cos(x)*dx)/(√(1+sin(x)))) = 2√(1 + sin(x)) + c!!!
Answer:
-3.7
Step-by-step explanation:
-3.2 + 1.5 -2 = -3.7
Simple....
so you have:

There's the law where if the number outside your parentheses is negative along with the number in the parentheses; it converts into positive...
-->>x-(-x)
--->>x+(+x)
This being said.....

-->>

-->>>

But remember, you want to simplify it....

(Decimal form..1.25)
Thus, your answer.