Differentiating the function
... g(x) = 5^(1+x)
we get
... g'(x) = ln(5)·5^(1+x)
Then the linear approximation near x=0 is
... y = g'(0)(x - 0) + g(0)
... y = 5·ln(5)·x + 5
With numbers filled in, this is
... y ≈ 8.047x + 5 . . . . . linear approximation to g(x)
Using this to find approximate values for 5^0.95 and 5^1.1, we can fill in x=-0.05 and x=0.1 to get
... 5^0.95 ≈ 8.047·(-0.05) +5 ≈ 4.598 . . . . approximation to 5^0.95
... 5^1.1 ≈ 8.047·0.1 +5 ≈ 5.805 . . . . approximation to 5^1.1
To solving with their equation and expression to step by step.
3b/a-2
= -2a+3b/a
Answer:
2
Step-by-step explanation:
2 - 1 1
------ = ----- = 2
1 - 1/2 .5
The power symbols are missing.
I can infere that the product intended to simplify is (7^8) * (7^-4)., because that permits you to use the rule of the product of powers with the same base.
That rule is that the product of two powers with the same base is the base raised to the sum of the powers is:
(A^m) * (A^n) = A^ (m+n)
=>(7^8) * (7^-4) = 7^ [8 + (- 4) ] = 7^ [8 - 4] = 7^4, which is the option 3 if the powers are placed correctly.
Answer:
48.5 and 34.5
Step-by-step explanation:
83 divided by 2 and then subtract 7