Answer:
тусын ыкс ыз ди ды жазып көр
The answer to this question is a=2
(x^a)(x^b)=x^(a+b)
(ab)(cd)=(a)(b)(c)(d)
x^-m=1/(x^m)
(3y^-4)(2y^-4)=
(3)(y^-4)(2)(y^-4)=
(6)(y^-8)=
6/(y^8)
Answer:
We are 95% confident that the percent of executives who prefer trucks is between 19.43% and 33.06%
Step-by-step explanation:
We are given that in a group of randomly selected adults, 160 identified themselves as executives.
n = 160
Also we are given that 42 of executives preferred trucks.
So the proportion of executives who prefer trucks is given by
p = 42/160
p = 0.2625
We are asked to find the 95% confidence interval for the percent of executives who prefer trucks.
We can use normal distribution for this problem if the following conditions are satisfied.
n×p ≥ 10
160×0.2625 ≥ 10
42 ≥ 10 (satisfied)
n×(1 - p) ≥ 10
160×(1 - 0.2625) ≥ 10
118 ≥ 10 (satisfied)
The required confidence interval is given by

Where p is the proportion of executives who prefer trucks, n is the number of executives and z is the z-score corresponding to the confidence level of 95%.
Form the z-table, the z-score corresponding to the confidence level of 95% is 1.96







Therefore, we are 95% confident that the percent of executives who prefer trucks is between 19.43% and 33.06%
What is the slope of the line through (-7,-8)(−7,−8)left parenthesis, minus, 7, comma, minus, 8, right parenthesis and (0,4)(0,4
ANEK [815]
Answer:
12/7
Step-by-step explanation:
When given two points, we can find the slope by using
m = (y2-y1)/(x2-x1)
= (4 - -8)/ (0 - -7)
= (4+8) / (0+7)
= 12/7