Answer:
Step-by-step explanation:
Given that :
the side of the square = 90ft
The speed of the runner = 31 ft/sec
By the time the runner is halfway to the first base; the distance covered by the runner in time(t) is (31 t) ft and the distance half the base = 90/2 = 45 ft
Thus; 31 t = 45
t = 45/31
From the second base ; the distance is given as:
P² = (90)² + (90 - 31t )²
P =
By differentiation with time;
![\dfrac{dP}{dt} =\dfrac{1}{ 2 \sqrt{90^2 +(90-31t)^2} } *(0+ 2 (90-31t)(0-31))](https://tex.z-dn.net/?f=%5Cdfrac%7BdP%7D%7Bdt%7D%20%3D%5Cdfrac%7B1%7D%7B%202%20%5Csqrt%7B90%5E2%20%2B%2890-31t%29%5E2%7D%20%7D%20%2A%280%2B%202%20%2890-31t%29%280-31%29%29)
![\dfrac{dP}{dt} =\dfrac{1}{ 2 \sqrt{90^2 +(90-31t)^2} } * 2 (-31)(90-31t)](https://tex.z-dn.net/?f=%5Cdfrac%7BdP%7D%7Bdt%7D%20%3D%5Cdfrac%7B1%7D%7B%202%20%5Csqrt%7B90%5E2%20%2B%2890-31t%29%5E2%7D%20%7D%20%2A%202%20%28-31%29%2890-31t%29)
At t = 45/31
![\dfrac{dP}{dt} =\dfrac{1}{ 2 \sqrt{90^2 +45^2} } * 2 (-31)(45)](https://tex.z-dn.net/?f=%5Cdfrac%7BdP%7D%7Bdt%7D%20%3D%5Cdfrac%7B1%7D%7B%202%20%5Csqrt%7B90%5E2%20%2B45%5E2%7D%20%7D%20%2A%202%20%28-31%29%2845%29)
![\dfrac{dP}{dt} =\dfrac{-35*45}{100.623}](https://tex.z-dn.net/?f=%5Cdfrac%7BdP%7D%7Bdt%7D%20%3D%5Cdfrac%7B-35%2A45%7D%7B100.623%7D)
= - 13.86 ft/sec
Hence, we can conclude that as soon as the runner is halfway to the first base, the distance to the second base is therefore decreasing by 13.86 ft/sec
b) The distance from third base can be expressed by the relation:
q² = (31t)² + (90)²
![q = \sqrt{(31t)^2+(90)^2}](https://tex.z-dn.net/?f=q%20%3D%20%5Csqrt%7B%2831t%29%5E2%2B%2890%29%5E2%7D)
By differentiation with respect to time:
![\dfrac{dq}{dt} = \dfrac{1}{2\sqrt{90^2 + (31)t^2} } *(0+31^2 + 2t)](https://tex.z-dn.net/?f=%5Cdfrac%7Bdq%7D%7Bdt%7D%20%3D%20%5Cdfrac%7B1%7D%7B2%5Csqrt%7B90%5E2%20%2B%20%2831%29t%5E2%7D%20%7D%20%2A%280%2B31%5E2%20%2B%202t%29)
At t = 45/31
![\dfrac{dq}{dt} = \dfrac{1}{2\sqrt{90^2 + 45^2} } *(0+31^2 + \frac{45}{31})](https://tex.z-dn.net/?f=%5Cdfrac%7Bdq%7D%7Bdt%7D%20%3D%20%5Cdfrac%7B1%7D%7B2%5Csqrt%7B90%5E2%20%2B%2045%5E2%7D%20%7D%20%2A%280%2B31%5E2%20%2B%20%5Cfrac%7B45%7D%7B31%7D%29)
![= \dfrac{31*45}{100.623}](https://tex.z-dn.net/?f=%3D%20%5Cdfrac%7B31%2A45%7D%7B100.623%7D)
![= 13.86 \ ft/sec](https://tex.z-dn.net/?f=%3D%2013.86%20%5C%20ft%2Fsec)
Thus, the rate at which the runner's distance is from the third base is increasing at the same moment of 13.86 ft/sec. So therefore; he is moving away from the third base at the same speed to the first base)