The given plane,
, has normal vector
. Any plane parallel to this one has the same normal vector.
Let
be any point in the plane we want. The plane contains the point (1, 1, -1), so an arbitrary vector in this plane is

and this is perpendicular to
.
So the equation of the plane is

or equivalently,

Answer:
![W=\{\left[\begin{array}{ccc}a+2b\\b\\-3a\end{array}\right]: a,b\in\mathbb{R} \}](https://tex.z-dn.net/?f=W%3D%5C%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%2B2b%5C%5Cb%5C%5C-3a%5Cend%7Barray%7D%5Cright%5D%3A%20a%2Cb%5Cin%5Cmathbb%7BR%7D%20%5C%7D)
Observe that if the vector
is in W then it satisfies:
![\left[\begin{array}{ccc}x\\y\\z\end{array}\right]=\left[\begin{array}{c}a+2b\\b\\-3a\end{array}\right]=a\left[\begin{array}{c}1\\0\\-3\end{array}\right]+b\left[\begin{array}{c}2\\1\\0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Da%2B2b%5C%5Cb%5C%5C-3a%5Cend%7Barray%7D%5Cright%5D%3Da%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%5C%5C0%5C%5C-3%5Cend%7Barray%7D%5Cright%5D%2Bb%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%5C%5C1%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
This means that each vector in W can be expressed as a linear combination of the vectors ![\left[\begin{array}{c}1\\0\\-3\end{array}\right], \left[\begin{array}{c}2\\1\\0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%5C%5C0%5C%5C-3%5Cend%7Barray%7D%5Cright%5D%2C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%5C%5C1%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
Also we can see that those vectors are linear independent. Then the set
is a basis for W and the dimension of W is 2.
Answer:
7.5%
Step-by-step explanation:
86 - 80 / 80 = 0.075
so 7.5%
Answer:
gftfyuoppoiu7644wqqettuiopouytrewesdffhjklju
Step-by-step explanation:
gffggghhhjjklliigg
<h3>Answer: Radius</h3>
Let point A be the center of the circle. Point B is somewhere on the circle edge. The distance from A to B is equal to the radius. The radius is half the diameter which spans the whole circle and it goes through the center. The circumference is the curved distance around the whole circle's perimeter.