Part 1:-
- cost to park of a day is= $25+$43+$61+$79 =$208
- and the hourly rate to a paddle boat =208÷24=$8.6 per hour
______________________
<h3>What will Lin pay if she rents a paddleboat for 3.5 hours and splits the total cost with a friend? Completethe explanation.</h3>
The total cost to rent the boat will be
<u>3.5</u> hours x $<u> </u><u>12</u> per hour + $ <u>5</u> =$<u>47</u>
<u>i</u><u>f</u><u> </u><u>she </u><u>spilt </u><u>cost </u><u>with </u><u>a </u><u>friend</u><u> </u><u>,</u><u>they </u><u>will </u><u>each </u><u>pay$</u><u>4</u><u>7</u><u> </u><u>÷</u><u> </u><u>2</u><u>=</u><u> </u><u>$</u><u> </u><u>2</u><u>3</u><u>.</u><u>5</u>
We have to see the graph to what the answer is. Sorry I wish I could help!
7.72 Lbs/week
Hope this helps :)
Answer:
44
Step-by-step explanation:
90 - 43 = 47
x + 3 = 47
x = 47 - 3
= 44
I think the answer is 44. Pls check and correct me if I'm wrong.
Answer:
We use Baye's theorem: P(A)P(B|A) = P(B)P(A|B)
with (A) being defective and
(B) marked as defective
we have to find P(B) = P(A).P(B|A) + P(¬A)P(B|¬A). .......eq(2)
Since P(A) = 0.1 and P(B|A)=0.9,
P(¬A) = 1 - P(A) = 1 - 0.1 = 0.9
and
P(B|A¬) = 1 - P(¬B|¬A) = 1 - 0.85 = 0.15
put these values in eq(2)
P(B) = (0.1 × 0.9) + (0.9 × 0.15)
= 0.225 put this in eq(1) and solve for P(B)
P(B) = 0.4