Answer:
1) In the first step, we need to predict the possible alleles for the cross. The dominant allele will be written with a capital letter. The recessive allele will be written with a small letter. Hence, the allele for brown hair colour will be B and the allele for red hair colour will be b.
2) In the second step, we need to determine the genotype of the parents. The genotype of the homozygous dominant parent will be BB. The genotype of the heterozygous brown hair colour will be Bb.
3) The punnet square for cross between these parents can be shown as follows:
B b
B BB Bb
B BB Bb
4) In the fourth step, lets determine the phenotype of the children. The phenotype of all the offsprings born will be brown hair colour.
5) The genotype from the punnet square shows that there is a 50% chance that the offsprings will be heterozygous dominant (Bb) for brown hair colour and their will be a 50% chance that the child born will be homozygous dominant (BB).
Answer:
Explanation:
A convergent boundary (also known as a destructive boundary) is an area on Earth where two or more lithospheric plates collide. One plate eventually slides beneath the other, a process known as subduction. The subduction zone can be defined by a plane where many earthquakes occur, called the Wadati–Benioff zone.[1] These collisions happen on scales of millions to tens of millions of years and can lead to volcanism, earthquakes, orogenesis, destruction of lithosphere, and deformation. Convergent boundaries occur between oceanic-oceanic lithosphere, oceanic-continental lithosphere, and continental-continental lithosphere. The geologic features related to convergent boundaries vary depending on crust types.
Plate tectonics is driven by convection cells in the mantle. Convection cells are the result of heat generated by radioactive decay of elements in the mantle escaping to the surface and the return of cool materials from the surface to the mantle.[2] These convection cells bring hot mantle material to the surface along spreading centers creating new crust. As this new crust is pushed away from the spreading center by the formation of newer crust, it cools, thins, and becomes denser. Subduction begins when this dense crust converges with less dense crust. The force of gravity helps drive the subducting slab into the mantle.[3] As the relatively cool subducting slab sinks deeper into the mantle, it is heated, causing hydrous minerals to break down. This releases water into the hotter asthenosphere, which leads to partial melting of asthenosphere and volcanism. Both dehydration and partial melting occurs along the 1,000 °C (1,830 °F) isotherm, generally at depths of 65 to 130 km (40 to 81 mi).[4][5]
Some lithospheric plates consist of both continental and oceanic lithosphere. In some instances, initial convergence with another plate will destroy oceanic lithosphere, leading to convergence of two continental plates. Neither continental plate will subduct. It is likely that the plate may break along the boundary of continental and oceanic crust. Seismic tomography reveals pieces of lithosphere that have broken off during convergence
Answer:
Si, esto es lo que se conoce como circulacion menor.
Explanation:
La sangre cumple un recorrido en el corazon a la cual se la llama circulacion mayor, una vez que se continua su camino hacia los pulmones ahi ya pasa a ser circulacion sanguinea menor.
Estas circulaciones estan sumamente coordinadas y tienen un orden ritmico, con un unico fin, que es oxigenar la sangre que se recolecta de todo el organismo.
Es asi como la sangre que viene con CO2 entra a los pulmones posterior a la eyeccion cardiaca y cumple con el proceso de homeostasis en el alveolo y se oxigena.
The variety of organisms that occupy a given region including microscopic protists to large mammals. The region can be a political unit such as a country a geographic feature such as a mountain range or the entire world. The first level of bio diversity is genetic diversity. Next is taxonomic diversity. Also ecological diversity.
Answer:
B
Explanation:
A compound can easily be separated into substances by chemical processes but a mixture can't.