Studio = 7 yards by 4 yards
Area = 7*4 = 28 square yards.
Area of square carpet = 1 yard * 1 yard = 1 square yard
Number needed = Area of studio / Area of square carpet = 28 / 1 = 28
Number needed = 28
Answer:
<u>1st pic:</u>
x = 49
top angle = 45
bottom angle = 108
far right angle = 27 degrees
<u>2nd pic:</u>
angle 1 = 88 degrees
angle 2 = 57 degrees
angle 3 = 35 degrees
angle 4 = 145 degrees
Step-by-step explanation:
<u>1st pic:</u>
you can find the far right angle by taking 153 and subtracting it from 180:
⇒ 180 - 153 = 27 degrees
you can find x by the following equation ⇒ x - 4 + 2x + 10 + 27 = 180
combine like terms ⇒ 3x + 33 = 180
subtract 33 from each side ⇒ 3x + 33 - 33 = 180 - 33 ⇒ 3x = 147
divide 3 on each side: ⇒ 
x = 49
to find the top and bottom angles, substitute 49 for x:
top angle : x - 4
49 - 4 = 45 degrees
bottom angle: 2x + 10
2 x 49 + 10 = 108 degrees
<u>2nd pic:</u>
angle 1:
⇒ 180 - 92 = 88 degrees
angle 2:
⇒ 180 - 123 = 57 degrees
angle 3:
⇒ 180 - (88 + 57) = 35 degrees
angle 4:
⇒ 180 - 35 = 145 dgerees
let's notice something, the parabola is a vertical one, so the squared variable is the x, and is opening downwards, meaning the x² will have a negative coefficient.
the distance from the vertex to the directrix/focus is the amount of "p" units, let's see in the graph, the distance from the vertex to the directrix is 2, and since the parabola is opening downwards, "p" is a negative 2, p = -2. The vertex is of course at (0, 2).
![\bf \textit{parabola vertex form with focus point distance} \\\\ 4p(y- k)=(x- h)^2 \qquad \begin{array}{llll} vertex\ ( h, k)\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix} \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} h=0\\ k=2\\ p=-2 \end{cases}\implies 4(-2)(y-2)=(x-0)^2\implies -8(y-2)=x^2 \\\\\\ y-2=\cfrac{x^2}{-8}\implies \blacktriangleright y=-\cfrac{1}{8}x^2+2 \blacktriangleleft](https://tex.z-dn.net/?f=%20%5Cbf%20%5Ctextit%7Bparabola%20vertex%20form%20with%20focus%20point%20distance%7D%0A%5C%5C%5C%5C%0A4p%28y-%20k%29%3D%28x-%20h%29%5E2%0A%5Cqquad%0A%5Cbegin%7Barray%7D%7Bllll%7D%0Avertex%5C%20%28%20h%2C%20k%29%5C%5C%5C%5C%20%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%0A%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0A%5Cbegin%7Bcases%7D%0Ah%3D0%5C%5C%0Ak%3D2%5C%5C%0Ap%3D-2%0A%5Cend%7Bcases%7D%5Cimplies%204%28-2%29%28y-2%29%3D%28x-0%29%5E2%5Cimplies%20-8%28y-2%29%3Dx%5E2%0A%5C%5C%5C%5C%5C%5C%0Ay-2%3D%5Ccfrac%7Bx%5E2%7D%7B-8%7D%5Cimplies%20%5Cblacktriangleright%20y%3D-%5Ccfrac%7B1%7D%7B8%7Dx%5E2%2B2%20%5Cblacktriangleleft%20)