Which set of ordered pairs represents y as a function of x? O {(-8,3), (0,7), (2,-4), (-3,7)} O {(-4,0), (-1,3), (-9,-3), (-4,-8
Arada [10]
Answer:
hsdmcajkcjwhvbehvfjwgfu
Step-by-step explanation:
its nothing compared to college !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
The answer to the question is 7,516
Answer:
Remember, a basis for the row space of a matrix A is the set of rows different of zero of the echelon form of A.
We need to find the echelon form of the matrix augmented matrix of the system A2x=b2
![B=\left[\begin{array}{cccc}1&2&3&1\\4&5&6&1\\7&8&9&1\\3&2&4&1\\6&5&4&1\\9&8&7&1\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%262%263%261%5C%5C4%265%266%261%5C%5C7%268%269%261%5C%5C3%262%264%261%5C%5C6%265%264%261%5C%5C9%268%267%261%5Cend%7Barray%7D%5Cright%5D)
We apply row operations:
1.
- To row 2 we subtract row 1, 4 times.
- To row 3 we subtract row 1, 7 times.
- To row 4 we subtract row 1, 3 times.
- To row 5 we subtract row 1, 6 times.
- To row 6 we subtract row 1, 9 times.
We obtain the matrix
![\left[\begin{array}{cccc}1&2&3&1\\0&-3&-6&-3\\0&-6&-12&-6\\0&-4&-5&-2\\0&-7&-14&-5\\0&-10&-20&-8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%262%263%261%5C%5C0%26-3%26-6%26-3%5C%5C0%26-6%26-12%26-6%5C%5C0%26-4%26-5%26-2%5C%5C0%26-7%26-14%26-5%5C%5C0%26-10%26-20%26-8%5Cend%7Barray%7D%5Cright%5D)
2.
- We subtract row two twice to row three of the previous matrix.
- we subtract 4/3 from row two to row 4.
- we subtract 7/3 from row two to row 5.
- we subtract 10/3 from row two to row 6.
We obtain the matrix
![\left[\begin{array}{cccc}1&2&3&1\\0&-3&-6&-3\\0&0&0&0\\0&0&3&2\\0&0&0&2\\0&0&0&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%262%263%261%5C%5C0%26-3%26-6%26-3%5C%5C0%260%260%260%5C%5C0%260%263%262%5C%5C0%260%260%262%5C%5C0%260%260%262%5Cend%7Barray%7D%5Cright%5D)
3.
we exchange rows three and four of the previous matrix and obtain the echelon form of the augmented matrix.
![\left[\begin{array}{cccc}1&2&3&1\\0&-3&-6&-3\\0&0&3&2\\0&0&0&0\\0&0&0&2\\0&0&0&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%262%263%261%5C%5C0%26-3%26-6%26-3%5C%5C0%260%263%262%5C%5C0%260%260%260%5C%5C0%260%260%262%5C%5C0%260%260%262%5Cend%7Barray%7D%5Cright%5D)
Since the only nonzero rows of the augmented matrix of the coefficient matrix are the first three, then the set
![\{\left[\begin{array}{c}1\\2\\3\end{array}\right],\left[\begin{array}{c}0\\-3\\-6\end{array}\right],\left[\begin{array}{c}0\\0\\3\end{array}\right] \}](https://tex.z-dn.net/?f=%5C%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%5C%5C2%5C%5C3%5Cend%7Barray%7D%5Cright%5D%2C%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C-3%5C%5C-6%5Cend%7Barray%7D%5Cright%5D%2C%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C3%5Cend%7Barray%7D%5Cright%5D%20%5C%7D)
is a basis for Row (A2)
Now, observe that the last two rows of the echelon form of the augmented matrix have the last coordinate different of zero. Then, the system is inconsistent. This means that the system has no solutions.
Answer:
length 15 width 9
Step-by-step explanation:
Then the length can be represented by the following expression: (x + 6)
Since area is equal to length times width, we can write the following equation for the area:
A = length * width
135 = (w + 6) * w
Now we can solve for w after using the distributive property and factoring:
135 = (w + 6) * w
135 = w^2 + 6w
0 = w^2 + 6w - 135
This factors to:
0 = (w + 15) (w -9)
w = -15 OR w = 9
The equations y=55x+50 and y=65x represents Rick's and Betty's trip.
Step-by-step explanation:
Given,
Head start of Rick = 50 miles
Speed of Rick = 55 mph
Let,
x be the number of hours
y be the total miles
Distance covered by Rick in x hours = Speed * Time + Head start
y = 55x + 50
Speed of Betty = 65 mph
Total miles = Speed*Time
y=65x
The equations y=55x+50 and y=65x represents Rick's and Betty's trip.
Keywords: variable, addition
Learn more about variables at:
#LearnwithBrainly