Answer:
y=-1x+2
Step-by-step explanation:
I think this is the answer because 2 is the y intercept and the x is -2 but negative would not be the slope.
____________________________________________________
Answer:
It represents the cost of the DVD player.
____________________________________________________
Step-by-step explanation:
The reason why it represents the cost of the DVD player is because in the question, it doesn't mention anything about buying multiple DVD players. Ebony would need to buy many DVD's, but doesn't need many DVD players because ebony could use one for all of the DVD's. If you noticed in the question, it says "a DVD player," what this means is that Ebony is only going to buy one DVD player, since it's singular (without and s at the end).
The equation is saying that she starts off with buying 1 DVD player for 200 dollars; and, she is buying n (number of DVDs) for 20 dollars each.
This shows that the 200 in the equation in the question represents the cost of the DVD player.
____________________________________________________
Answer: option d. C (0,3), D (0,5).
Justification:
1) The x - coordinates of the vertices A and B are shown in the diagrama, They are both - 4, so the new vertices C and D must be in a line parallel to y = - 4.
2) The y-coordinates of the vertices A and B are also shown in the diagrama. They are equal to 3 and 5 respectively.
3) We can see that the new points C and D must be over a parallel line to y = - 4 and that their distance to the points A and B has to be the same distance of the point R and S to U and T.
That distance is 4, so the line may be y = - 7 or y = 0.
4) If the line is y = 7 the points C and D would have coordinates (-7,3) and (-7,5), but this points are not among the options.
5) If the line is y = 0 the points C and D would have coordinates (0, 3) and (0,5), which is precisely the points of the option d. That is the answer.
This sequence has generating function

(if we include
for a moment)
Recall that for
, we have

Take the derivative to get


Take the derivative again:


Take the derivative one more time:


so we have
