Here are the numbers that represent each based on the box plot:
Median: 11 (located at the vertical line in the middle of the box)
Range: 19 - 7 = 12 (highest value - lowest value)
25%: 9 (at the left end of the box)
75%: 14 (at the right end of the box)
Interquartile range: 14 - 9 = 5 (the distance from the beginning to the end of the middle half of the data)
a) true
b) false
c) true
Step-by-step explanation:
<h3>let's determine the first statement</h3><h3>to determine x-intercept </h3><h3>substitute y=0</h3>
so,
8x-2y=24
8x-2.0=24
8x=24
x=3
therefore
the first statement is <u>true</u>
let's determine the second statement
<h3>to determine y-intercept </h3><h3>substitute x=0</h3>
so,
8x-2y=24
8.0-2y=24
-2y=24
y=-12
therefore
the second statement is <u>False</u>
to determine the third statements
<h3>we need to turn the given equation into this form</h3><h2>y=mx+b</h2><h3>let's solve:</h3>
8x-2y=24
-2y=-8x+24
y=4x-12
therefore,
the third statement is also <u>true</u>
Answer:
<h2>(f · g)(x) is odd</h2><h2>(g · g)(x) is even</h2>
Step-by-step explanation:
If f(x) is even, then f(-x) = f(x).
If g(x) is odd, then g(-x) = -g(x).
(f · g)(x) = f(x) · g(x)
Check:
(f · g)(-x) = f(-x) · g(-x) = f(x) · [-g(x)] = -[f(x) · g(x)] = -(f · g)(x)
(f · g)(-x) = -(f · g)(x) - odd
(g · g)(x) = g(x) · g(x)
Check:
(g · g)(-x) = g(-x) · g(-x) = [-g(x)] · [-g(x)] = g(x) · g(x) = (g · g)(x)
(g · g)(-x) = (g · g)(x) - even
Answer:
Yes, you can use this inequality to find the numbers of cars required.
Step-by-step explanation:
12 + 3n > 28 where n = the number of cars required
3n > 28 -12
3n > 16
n > 5 1/3
Greater than 5 1/3 gives 6 cars.